Limitations of local update recovery in stabilizer-GKP codes: a quantum
optimal transport approach
- URL: http://arxiv.org/abs/2309.16241v1
- Date: Thu, 28 Sep 2023 08:29:52 GMT
- Title: Limitations of local update recovery in stabilizer-GKP codes: a quantum
optimal transport approach
- Authors: Robert K\"onig and Cambyse Rouz\'e
- Abstract summary: Local update recovery seeks to maintain quantum information by applying local correction maps with and compensating for the action of noise.
We show that for loss rates above a threshold given explicitly as a function of the locality of the recovery maps, encoded information is lost at an exponential rate.
- Score: 0.5439020425818999
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Local update recovery seeks to maintain quantum information by applying local
correction maps alternating with and compensating for the action of noise.
Motivated by recent constructions based on quantum LDPC codes in the
finite-dimensional setting, we establish an analytic upper bound on the
fault-tolerance threshold for concatenated GKP-stabilizer codes with local
update recovery. Our bound applies to noise channels that are tensor products
of one-mode beamsplitters with arbitrary environment states, capturing, in
particular, photon loss occurring independently in each mode. It shows that for
loss rates above a threshold given explicitly as a function of the locality of
the recovery maps, encoded information is lost at an exponential rate. This
extends an early result by Razborov from discrete to continuous variable (CV)
quantum systems.
To prove our result, we study a metric on bosonic states akin to the
Wasserstein distance between two CV density functions, which we call the
bosonic Wasserstein distance. It can be thought of as a CV extension of a
quantum Wasserstein distance of order 1 recently introduced by De Palma et al.
in the context of qudit systems, in the sense that it captures the notion of
locality in a CV setting. We establish several basic properties, including a
relation to the trace distance and diameter bounds for states with finite
average photon number. We then study its contraction properties under quantum
channels, including tensorization, locality and strict contraction under
beamsplitter-type noise channels. Due to the simplicity of its formulation, and
the established wide applicability of its finite-dimensional counterpart, we
believe that the bosonic Wasserstein distance will become a versatile tool in
the study of CV quantum systems.
Related papers
- Non-local resources for error correction in quantum LDPC codes [0.0]
Surface code suffers from a low encoding rate, requiring a vast number of physical qubits for large-scale quantum computation.
hypergraph product codes present a promising alternative, as both their encoding rate and distance scale with block size.
Recent advancements have shown how to deterministically perform high-fidelity cavity enabled non-local many-body gates.
arXiv Detail & Related papers (2024-09-09T17:28:41Z) - Lindblad-like quantum tomography for non-Markovian quantum dynamical maps [46.350147604946095]
We introduce Lindblad-like quantum tomography (L$ell$QT) as a quantum characterization technique of time-correlated noise in quantum information processors.
We discuss L$ell$QT for the dephasing dynamics of single qubits in detail, which allows for a neat understanding of the importance of including multiple snapshots of the quantum evolution in the likelihood function.
arXiv Detail & Related papers (2024-03-28T19:29:12Z) - Locally purified density operators for noisy quantum circuits [17.38734393793605]
We show that mixed states generated from noisy quantum circuits can be efficiently represented by locally purified density operators (LPDOs)
We present a mapping from LPDOs of $N$ qubits to projected entangled-pair states of size $2times N$ and introduce a unified method for managing virtual and Kraus bonds.
arXiv Detail & Related papers (2023-12-05T16:10:30Z) - Dual-GSE: Resource-efficient Generalized Quantum Subspace Expansion [2.3847436897240453]
A generalized quantum subspace expansion (GSE) has been proposed that is significantly robust against coherent errors.
We propose a resource-efficient implementation of GSE, which we name "Dual-GSE"
Remarkably, Dual-GSE can further simulate larger quantum systems beyond the size of available quantum hardware.
arXiv Detail & Related papers (2023-09-25T14:28:40Z) - Distinguishing dynamical quantum criticality through local fidelity
distances [0.0]
We study the dynamical quantum phase transition in integrable and non-integrable Ising chains.
The non-analyticities in the quantum distance between two subsystem density matrices identify the critical time.
We propose a distance measure from the upper bound of the local quantum fidelity for certain quench protocols.
arXiv Detail & Related papers (2023-08-01T10:27:35Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Lossy Quantum Source Coding with a Global Error Criterion based on a
Posterior Reference Map [7.646713951724011]
We consider the lossy quantum source coding problem where the task is to compress a given quantum source below its von Neumann entropy.
Inspired by the duality connections between the rate-distortion and channel coding problems in the classical setting, we propose a new formulation for the problem.
arXiv Detail & Related papers (2023-02-01T17:44:40Z) - Protecting the quantum interference of cat states by phase-space
compression [45.82374977939355]
Cat states with their unique phase-space interference properties are ideal candidates for understanding quantum mechanics.
They are highly susceptible to photon loss, which inevitably diminishes their quantum non-Gaussian features.
Here, we protect these non-Gaussian features by compressing the phase-space distribution of a cat state.
arXiv Detail & Related papers (2022-12-02T16:06:40Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.