Cooperation Dynamics in Multi-Agent Systems: Exploring Game-Theoretic Scenarios with Mean-Field Equilibria
- URL: http://arxiv.org/abs/2309.16263v3
- Date: Fri, 3 May 2024 06:36:57 GMT
- Title: Cooperation Dynamics in Multi-Agent Systems: Exploring Game-Theoretic Scenarios with Mean-Field Equilibria
- Authors: Vaigarai Sathi, Sabahat Shaik, Jaswanth Nidamanuri,
- Abstract summary: This paper investigates strategies to invoke cooperation in game-theoretic scenarios, namely the Iterated Prisoner's Dilemma.
Existing cooperative strategies are analyzed for their effectiveness in promoting group-oriented behavior in repeated games.
The study extends to scenarios with exponentially growing agent populations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cooperation is fundamental in Multi-Agent Systems (MAS) and Multi-Agent Reinforcement Learning (MARL), often requiring agents to balance individual gains with collective rewards. In this regard, this paper aims to investigate strategies to invoke cooperation in game-theoretic scenarios, namely the Iterated Prisoner's Dilemma, where agents must optimize both individual and group outcomes. Existing cooperative strategies are analyzed for their effectiveness in promoting group-oriented behavior in repeated games. Modifications are proposed where encouraging group rewards will also result in a higher individual gain, addressing real-world dilemmas seen in distributed systems. The study extends to scenarios with exponentially growing agent populations ($N \longrightarrow +\infty$), where traditional computation and equilibrium determination are challenging. Leveraging mean-field game theory, equilibrium solutions and reward structures are established for infinitely large agent sets in repeated games. Finally, practical insights are offered through simulations using the Multi Agent-Posthumous Credit Assignment trainer, and the paper explores adapting simulation algorithms to create scenarios favoring cooperation for group rewards. These practical implementations bridge theoretical concepts with real-world applications.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Enhancing Heterogeneous Multi-Agent Cooperation in Decentralized MARL via GNN-driven Intrinsic Rewards [1.179778723980276]
Multi-agent Reinforcement Learning (MARL) is emerging as a key framework for sequential decision-making and control tasks.
The deployment of these systems in real-world scenarios often requires decentralized training, a diverse set of agents, and learning from infrequent environmental reward signals.
We propose the CoHet algorithm, which utilizes a novel Graph Neural Network (GNN) based intrinsic motivation to facilitate the learning of heterogeneous agent policies.
arXiv Detail & Related papers (2024-08-12T21:38:40Z) - Toward Optimal LLM Alignments Using Two-Player Games [86.39338084862324]
In this paper, we investigate alignment through the lens of two-agent games, involving iterative interactions between an adversarial and a defensive agent.
We theoretically demonstrate that this iterative reinforcement learning optimization converges to a Nash Equilibrium for the game induced by the agents.
Experimental results in safety scenarios demonstrate that learning in such a competitive environment not only fully trains agents but also leads to policies with enhanced generalization capabilities for both adversarial and defensive agents.
arXiv Detail & Related papers (2024-06-16T15:24:50Z) - Aligning Individual and Collective Objectives in Multi-Agent Cooperation [18.082268221987956]
Mixed-motive cooperation is one of the most prominent challenges in multi-agent learning.
We introduce a novel optimization method named textbftextitAltruistic textbftextitGradient textbftextitAdjustment (textbftextitAgA) that employs gradient adjustments to progressively align individual and collective objectives.
We evaluate the effectiveness of our algorithm AgA through benchmark environments for testing mixed-motive collaboration with small-scale agents.
arXiv Detail & Related papers (2024-02-19T08:18:53Z) - Quantifying Agent Interaction in Multi-agent Reinforcement Learning for
Cost-efficient Generalization [63.554226552130054]
Generalization poses a significant challenge in Multi-agent Reinforcement Learning (MARL)
The extent to which an agent is influenced by unseen co-players depends on the agent's policy and the specific scenario.
We present the Level of Influence (LoI), a metric quantifying the interaction intensity among agents within a given scenario and environment.
arXiv Detail & Related papers (2023-10-11T06:09:26Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
We propose a multi-agent framework framework that can collaboratively adjust its composition as a greater-than-the-sum-of-its-parts system.
Our experiments demonstrate that framework framework can effectively deploy multi-agent groups that outperform a single agent.
In view of these behaviors, we discuss some possible strategies to leverage positive ones and mitigate negative ones for improving the collaborative potential of multi-agent groups.
arXiv Detail & Related papers (2023-08-21T16:47:11Z) - A Hierarchical Game-Theoretic Decision-Making for Cooperative
Multi-Agent Systems Under the Presence of Adversarial Agents [1.52292571922932]
Underlying relationships among Multi-Agent Systems (MAS) in hazardous scenarios can be represented as Game-theoretic models.
This paper proposes a new hierarchical network-based model called Game-theoretic Utility Tree (GUT)
It decomposes high-level strategies into executable low-level actions for cooperative MAS decisions.
arXiv Detail & Related papers (2023-03-28T15:16:23Z) - DM$^2$: Distributed Multi-Agent Reinforcement Learning for Distribution
Matching [43.58408474941208]
This paper studies the problem of distributed multi-agent learning without resorting to explicit coordination schemes.
Each individual agent matches a target distribution of concurrently sampled trajectories from a joint expert policy.
Experimental validation on the StarCraft domain shows that combining the reward for distribution matching with the environment reward allows agents to outperform a fully distributed baseline.
arXiv Detail & Related papers (2022-06-01T04:57:50Z) - Finding General Equilibria in Many-Agent Economic Simulations Using Deep
Reinforcement Learning [72.23843557783533]
We show that deep reinforcement learning can discover stable solutions that are epsilon-Nash equilibria for a meta-game over agent types.
Our approach is more flexible and does not need unrealistic assumptions, e.g., market clearing.
We demonstrate our approach in real-business-cycle models, a representative family of DGE models, with 100 worker-consumers, 10 firms, and a government who taxes and redistributes.
arXiv Detail & Related papers (2022-01-03T17:00:17Z) - Cooperative and Competitive Biases for Multi-Agent Reinforcement
Learning [12.676356746752893]
Training a multi-agent reinforcement learning (MARL) algorithm is more challenging than training a single-agent reinforcement learning algorithm.
We propose an algorithm that boosts MARL training using the biased action information of other agents based on a friend-or-foe concept.
We empirically demonstrate that our algorithm outperforms existing algorithms in various mixed cooperative-competitive environments.
arXiv Detail & Related papers (2021-01-18T05:52:22Z) - Distributed Reinforcement Learning for Cooperative Multi-Robot Object
Manipulation [53.262360083572005]
We consider solving a cooperative multi-robot object manipulation task using reinforcement learning (RL)
We propose two distributed multi-agent RL approaches: distributed approximate RL (DA-RL) and game-theoretic RL (GT-RL)
Although we focus on a small system of two agents in this paper, both DA-RL and GT-RL apply to general multi-agent systems, and are expected to scale well to large systems.
arXiv Detail & Related papers (2020-03-21T00:43:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.