論文の概要: Aperture Diffraction for Compact Snapshot Spectral Imaging
- arxiv url: http://arxiv.org/abs/2309.16372v1
- Date: Wed, 27 Sep 2023 16:48:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-29 14:48:21.729918
- Title: Aperture Diffraction for Compact Snapshot Spectral Imaging
- Title(参考訳): コンパクトスナップショット分光イメージングのための開口回折
- Authors: Tao Lv, Hao Ye, Quan Yuan, Zhan Shi, Yibo Wang, Shuming Wang, Xun Cao
- Abstract要約: 我々は、Aperture Diffraction Imaging Spectrometer (ADIS) という、コンパクトで費用効率の良いスナップショット分光画像システムを紹介した。
モザイクフィルタセンサ上の離散符号化位置にオブジェクト空間の各点を多重化する新しい光学設計を導入する。
回折変性を強く知覚するカスケードシフトシャッフルスペクトル変換器(CSST)は、空間制約の逆問題を解決するために設計されている。
- 参考スコア(独自算出の注目度): 27.321750056840706
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We demonstrate a compact, cost-effective snapshot spectral imaging system
named Aperture Diffraction Imaging Spectrometer (ADIS), which consists only of
an imaging lens with an ultra-thin orthogonal aperture mask and a mosaic filter
sensor, requiring no additional physical footprint compared to common RGB
cameras. Then we introduce a new optical design that each point in the object
space is multiplexed to discrete encoding locations on the mosaic filter sensor
by diffraction-based spatial-spectral projection engineering generated from the
orthogonal mask. The orthogonal projection is uniformly accepted to obtain a
weakly calibration-dependent data form to enhance modulation robustness.
Meanwhile, the Cascade Shift-Shuffle Spectral Transformer (CSST) with strong
perception of the diffraction degeneration is designed to solve a
sparsity-constrained inverse problem, realizing the volume reconstruction from
2D measurements with Large amount of aliasing. Our system is evaluated by
elaborating the imaging optical theory and reconstruction algorithm with
demonstrating the experimental imaging under a single exposure. Ultimately, we
achieve the sub-super-pixel spatial resolution and high spectral resolution
imaging. The code will be available at: https://github.com/Krito-ex/CSST.
- Abstract(参考訳): 我々は,超薄型直交開口マスクとモザイクフィルタセンサを備えた撮像レンズと,一般的なRGBカメラと比べ,物理的なフットプリントを必要とせず,コンパクトで費用対効果の高いAperture Diffraction Imaging Spectrometer (ADIS) を実証した。
次に, 直交マスクから生成された回折に基づく空間分光投影技術を用いて, 物体空間の各点をモザイクフィルタセンサ上の離散符号化位置に多重化する新しい光学設計を提案する。
直交射影を均一に受け取り、弱いキャリブレーション依存のデータ形式を得て変調ロバスト性を高める。
一方, 回折変性を強く知覚するカスケードシフトシャッフルスペクトル変換器(CSST)は, 大量のエイリアシングによる2次元計測から体積再構成を実現することで, 空間制約の逆問題を解決するように設計されている。
本システムは, 単一露光下での実験的イメージングを実証し, 画像光学理論と再構成アルゴリズムを解明し, 評価を行う。
最終的に,サブスーパーピクセル空間分解能と高スペクトル分解能撮像を実現する。
コードは、https://github.com/Krito-ex/CSST.comで入手できる。
関連論文リスト
- HyperColorization: Propagating spatially sparse noisy spectral clues for reconstructing hyperspectral images [2.7214317850962106]
グレースケールガイド画像から高スペクトル像を再構成し,空間的に粗いスペクトル手がかりを抽出するカラー化を提案する。
提案アルゴリズムは,高スペクトル画像の様々なスペクトル次元に一般化し,低ランク空間における色付けが計算時間とショットノイズの影響を低減させることを示す。
論文 参考訳(メタデータ) (2024-03-18T16:33:43Z) - Residual Degradation Learning Unfolding Framework with Mixing Priors
across Spectral and Spatial for Compressive Spectral Imaging [29.135848304404533]
符号化開口スナップショット分光画像(CASSI)が提案されている。
CASSIシステムの中核的な問題は、信頼性と微妙な基礎となる3次元スペクトル立方体を2次元測定から回収することである。
本稿では,センサマトリックスと劣化過程のギャップを埋めるResidual Degradation Learning Unfolding Framework (RDLUF)を提案する。
論文 参考訳(メタデータ) (2022-11-13T12:31:49Z) - S^2-Transformer for Mask-Aware Hyperspectral Image Reconstruction [48.83280067393851]
代表的ハイパースペクトル画像取得手順は、符号化開口分光画像センサ(CASSI)による3D-to-2D符号化を行う
i) 2次元計測を得るために、CASSIは分散器タイトリングにより複数のチャネルを分散させ、それらを同じ空間領域に絞り込み、絡み合ったデータ損失をもたらす。
本稿では,これらの課題に対処するためのマスク対応学習戦略を備えた空間スペクトル(S2-)トランスフォーマーアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-09-24T19:26:46Z) - D$^\text{2}$UF: Deep Coded Aperture Design and Unrolling Algorithm for
Compressive Spectral Image Fusion [22.0246327137227]
本稿では,低空間分解能符号化開口スペクトル撮像器 (CASSI) アーキテクチャと高空間分解能マルチスペクトルカラーフィルタアレイ (MCFA) システムの圧縮測定の融合について述べる。
本稿では,従来のCSIFと異なり,エンド・ツー・エンド(E2E)方式でセンサアーキテクチャと再構成ネットワークを協調的に最適化する手法を提案する。
論文 参考訳(メタデータ) (2022-05-24T15:39:34Z) - Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image
Reconstruction [127.20208645280438]
ハイパースペクトル画像(HSI)再構成は、2次元計測から3次元空間スペクトル信号を復元することを目的としている。
スペクトル間相互作用のモデル化は、HSI再構成に有用である。
Mask-guided Spectral-wise Transformer (MST) は,HSI再構成のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-15T16:59:48Z) - Universal and Flexible Optical Aberration Correction Using Deep-Prior
Based Deconvolution [51.274657266928315]
そこで本研究では,収差画像とpsfマップを入力とし,レンズ固有深層プリエントを組み込んだ潜在高品質版を生成する,psf対応プラグイン・アンド・プレイ深層ネットワークを提案する。
具体的には、多彩なレンズの集合からベースモデルを事前訓練し、パラメータを迅速に精製して特定のレンズに適応させる。
論文 参考訳(メタデータ) (2021-04-07T12:00:38Z) - Time-Multiplexed Coded Aperture Imaging: Learned Coded Aperture and
Pixel Exposures for Compressive Imaging Systems [56.154190098338965]
提案した時間多重符号化開口(TMCA)をエンドツーエンドで最適化できることを示した。
tmcaは圧縮光野イメージングとハイパースペクトルイメージングの2つの異なる応用において、より良いコード化されたスナップショットを誘導する。
この凝固法は、最先端の圧縮画像システムよりも4dB以上性能が高い。
論文 参考訳(メタデータ) (2021-04-06T22:42:34Z) - Convolutional Autoencoder for Blind Hyperspectral Image Unmixing [0.0]
スペクトルアンミックス(英: spectrum unmixing)は、混合ピクセルを2つの基本的代表、すなわちエンドメンバーとアブリダンスに分解する技法である。
本稿では,ハイパースペクトル画像にブラインドアンミックスを行う新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-11-18T17:41:31Z) - Single-shot Hyperspectral-Depth Imaging with Learned Diffractive Optics [72.9038524082252]
単発単眼単眼ハイパースペクトル(HS-D)イメージング法を提案する。
本手法では, 回折光学素子 (DOE) を用いる。
DOE の学習を容易にするため,ベンチトップ HS-D イメージラーを構築することで,最初の HS-D データセットを提案する。
論文 参考訳(メタデータ) (2020-09-01T14:19:35Z) - Spectral DiffuserCam: lensless snapshot hyperspectral imaging with a
spectral filter array [1.6058099298620423]
ハイパースペクトルイメージングは、医学診断から農業作物のモニタリングまで幅広い応用に有用である。
従来のハイパースペクトル画像装置は、広く採用されるには、明らかに遅くて高価である。
ハイパースペクトルイメージングのためのコンパクトでコンパクトで安価なカメラを提案する。
論文 参考訳(メタデータ) (2020-06-15T17:31:17Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
本稿では,最先端の残差学習をベースとした単一グレー/RGB画像の超解像化手法について検討する。
本稿では,空間情報とハイパースペクトルデータのスペクトル間の相関をフル活用するための空間スペクトル先行ネットワーク(SSPN)を提案する。
実験結果から,SSPSR法により高分解能高分解能高分解能画像の詳細が得られた。
論文 参考訳(メタデータ) (2020-05-18T14:25:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。