論文の概要: RLLTE: Long-Term Evolution Project of Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2309.16382v1
- Date: Thu, 28 Sep 2023 12:30:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-29 14:37:24.678337
- Title: RLLTE: Long-Term Evolution Project of Reinforcement Learning
- Title(参考訳): RLLTE:強化学習の長期的発展プロジェクト
- Authors: Mingqi Yuan, Zequn Zhang, Yang Xu, Shihao Luo, Bo Li, Xin Jin, Wenjun
Zeng
- Abstract要約: 本稿では,RLLTEについて紹介する。RLLTEは長期的進化であり,高度にモジュール化された,強化学習研究と応用のためのオープンソースフレームワークである。
トップノーチアルゴリズムの実装を提供するだけでなく、RLLTEはアルゴリズム開発のためのツールキットとしても機能する。
RLLTEは、RLエンジニアリングの基準を設定し、産業や学界に高い刺激を与えると期待されている。
- 参考スコア(独自算出の注目度): 48.181733263496746
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We present RLLTE: a long-term evolution, extremely modular, and open-source
framework for reinforcement learning (RL) research and application. Beyond
delivering top-notch algorithm implementations, RLLTE also serves as a toolkit
for developing algorithms. More specifically, RLLTE decouples the RL algorithms
completely from the exploitation-exploration perspective, providing a large
number of components to accelerate algorithm development and evolution. In
particular, RLLTE is the first RL framework to build a complete and luxuriant
ecosystem, which includes model training, evaluation, deployment, benchmark
hub, and large language model (LLM)-empowered copilot. RLLTE is expected to set
standards for RL engineering practice and be highly stimulative for industry
and academia.
- Abstract(参考訳): 本稿では,RLLTEについて紹介する。RLLTEは長期的進化であり,高度にモジュール化された,強化学習(RL)研究と応用のためのオープンソースフレームワークである。
トップノーチアルゴリズムの実装を提供するだけでなく、RLLTEはアルゴリズム開発のためのツールキットとしても機能する。
より具体的には、RLLTEはRLアルゴリズムを搾取探索の観点から完全に分離し、アルゴリズム開発と進化を加速する多数のコンポーネントを提供する。
特に、RLLTEは、モデルトレーニング、評価、デプロイメント、ベンチマークハブ、LLM(Large Language Model)を内蔵した大規模言語モデル(LLM)を含む、完全な豪華なエコシステムを構築する最初のRLフレームワークである。
RLLTEは、RLエンジニアリングの基準を設定し、産業や学界に高い刺激を与えると期待されている。
関連論文リスト
- EvoRL: A GPU-accelerated Framework for Evolutionary Reinforcement Learning [24.389896398264202]
我々はGPUアクセラレーションに最適化された最初のエンドツーエンドEvoRLフレームワークである$texttt$textbfEvoRL$$を紹介した。
このフレームワークは、環境シミュレーションやECプロセスを含む、アクセラレーター上のトレーニングパイプライン全体を実行する。
論文 参考訳(メタデータ) (2025-01-25T08:31:07Z) - RLHF Workflow: From Reward Modeling to Online RLHF [79.83927049253924]
本稿では,RLHF(Online Iterative Reinforcement Learning from Human Feedback)のワークフローについて報告する。
RLHFは、最近の大規模言語モデル(LLM)文学において、オフライン言語よりもはるかに優れていると広く報告されている。
教師付き微調整(SFT)と反復RLHFは,完全なオープンソースデータセットを用いて最先端の性能を得ることができることを示す。
論文 参考訳(メタデータ) (2024-05-13T15:50:39Z) - Scalable Volt-VAR Optimization using RLlib-IMPALA Framework: A
Reinforcement Learning Approach [11.11570399751075]
本研究は, 深層強化学習(DRL)の可能性を活用した新しい枠組みを提案する。
DRLエージェントをRAYプラットフォームに統合することにより、RAYのリソースを効率的に利用してシステム適応性と制御を改善する新しいフレームワークであるRLlib-IMPALAの開発が容易になる。
論文 参考訳(メタデータ) (2024-02-24T23:25:35Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
筆者らは,報酬の計算と環境のリセットを行う手法とともに,効率的なオフ・ポリティクス・ディープ・RL法を含むライブラリを開発した。
我々は,PCBボードアセンブリ,ケーブルルーティング,オブジェクトの移動に関するポリシを,非常に効率的な学習を実現することができることを発見した。
これらの政策は完全な成功率またはほぼ完全な成功率、摂動下でさえ極端な堅牢性を実現し、突発的な堅牢性回復と修正行動を示す。
論文 参考訳(メタデータ) (2024-01-29T10:01:10Z) - Prevalence of Code Smells in Reinforcement Learning Projects [1.7218973692320518]
強化学習(Reinforcement Learning, RL)は、大規模および安全クリティカルシステムを含む多くの領域で、アプリケーションの振る舞いを学習し、適応するために、ますます使われている。
プラグインプレイRLライブラリの出現により、その適用性はさらに向上し、ユーザによるRLアルゴリズムの統合が可能になった。
しかしながら、これらのコードの大部分はRLエンジニアによって開発されていないため、結果として、バグ、準最適性能、保守性、RLベースのプロジェクトにおける進化問題をもたらすプログラム品質が低下する可能性があることに留意する。
論文 参考訳(メタデータ) (2023-03-17T20:25:13Z) - Karolos: An Open-Source Reinforcement Learning Framework for Robot-Task
Environments [0.3867363075280544]
強化学習(RL)研究において、シミュレーションはアルゴリズム間のベンチマークを可能にする。
本稿では,ロボット応用のためのフレームワークであるKarolosを紹介する。
コードはオープンソースでGitHubに公開されており、ロボット工学におけるRLアプリケーションの研究を促進することを目的としている。
論文 参考訳(メタデータ) (2022-12-01T23:14:02Z) - LCRL: Certified Policy Synthesis via Logically-Constrained Reinforcement
Learning [78.2286146954051]
LCRLは未知決定プロセス(MDP)上でのモデルフリー強化学習(RL)アルゴリズムを実装している
本稿では,LCRLの適用性,使いやすさ,拡張性,性能を示すケーススタディを提案する。
論文 参考訳(メタデータ) (2022-09-21T13:21:00Z) - RL-DARTS: Differentiable Architecture Search for Reinforcement Learning [62.95469460505922]
我々は、強化学習(RL)における微分可能なアーキテクチャ探索(DARTS)の最初の応用の1つであるRL-DARTSを紹介する。
画像エンコーダをDARTSスーパーネットに置き換えることにより、検索方法はサンプリング効率が高く、余分な計算資源が最小限必要であり、また、既存のコードに小さな変更を加える必要がなく、オフ・ポリティクスとオン・ポリティクスのRLアルゴリズムとも互換性がある。
スーパーネットはより優れたセルを徐々に学習し、手作業で設計したポリシーに対して高い競争力を持つ代替アーキテクチャへとつながり、RLポリシーの以前の設計選択も検証できることを示す。
論文 参考訳(メタデータ) (2021-06-04T03:08:43Z) - Reinforcement Learning for Control of Valves [0.0]
本稿では,非線形弁制御のための最適制御戦略として強化学習(RL)を提案する。
PID(proportional-integral-deivative)戦略に対して、統一されたフレームワークを用いて評価される。
論文 参考訳(メタデータ) (2020-12-29T09:01:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。