論文の概要: RLLTE: Long-Term Evolution Project of Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2309.16382v1
- Date: Thu, 28 Sep 2023 12:30:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-29 14:37:24.678337
- Title: RLLTE: Long-Term Evolution Project of Reinforcement Learning
- Title(参考訳): RLLTE:強化学習の長期的発展プロジェクト
- Authors: Mingqi Yuan, Zequn Zhang, Yang Xu, Shihao Luo, Bo Li, Xin Jin, Wenjun
Zeng
- Abstract要約: 本稿では,RLLTEについて紹介する。RLLTEは長期的進化であり,高度にモジュール化された,強化学習研究と応用のためのオープンソースフレームワークである。
トップノーチアルゴリズムの実装を提供するだけでなく、RLLTEはアルゴリズム開発のためのツールキットとしても機能する。
RLLTEは、RLエンジニアリングの基準を設定し、産業や学界に高い刺激を与えると期待されている。
- 参考スコア(独自算出の注目度): 48.181733263496746
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We present RLLTE: a long-term evolution, extremely modular, and open-source
framework for reinforcement learning (RL) research and application. Beyond
delivering top-notch algorithm implementations, RLLTE also serves as a toolkit
for developing algorithms. More specifically, RLLTE decouples the RL algorithms
completely from the exploitation-exploration perspective, providing a large
number of components to accelerate algorithm development and evolution. In
particular, RLLTE is the first RL framework to build a complete and luxuriant
ecosystem, which includes model training, evaluation, deployment, benchmark
hub, and large language model (LLM)-empowered copilot. RLLTE is expected to set
standards for RL engineering practice and be highly stimulative for industry
and academia.
- Abstract(参考訳): 本稿では,RLLTEについて紹介する。RLLTEは長期的進化であり,高度にモジュール化された,強化学習(RL)研究と応用のためのオープンソースフレームワークである。
トップノーチアルゴリズムの実装を提供するだけでなく、RLLTEはアルゴリズム開発のためのツールキットとしても機能する。
より具体的には、RLLTEはRLアルゴリズムを搾取探索の観点から完全に分離し、アルゴリズム開発と進化を加速する多数のコンポーネントを提供する。
特に、RLLTEは、モデルトレーニング、評価、デプロイメント、ベンチマークハブ、LLM(Large Language Model)を内蔵した大規模言語モデル(LLM)を含む、完全な豪華なエコシステムを構築する最初のRLフレームワークである。
RLLTEは、RLエンジニアリングの基準を設定し、産業や学界に高い刺激を与えると期待されている。
関連論文リスト
- Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II [52.083337333478674]
本稿では、時間窓を用いた多目的車両ルーティング問題(MOVRPTW)に対処するために、ウェイト・アウェア・ディープ・強化学習(WADRL)手法を提案する。
WADRLの結果を最適化するために非支配的ソート遺伝的アルゴリズム-II (NSGA-II) 法を用いる。
論文 参考訳(メタデータ) (2024-07-18T02:46:06Z) - ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [80.10358123795946]
大規模言語モデルを微調整するためのマルチターンRLアルゴリズムを構築するためのフレームワークを開発する。
我々のフレームワークは階層的なRLアプローチを採用し、2つのRLアルゴリズムを並列に実行している。
実験により,ArCHerはエージェントタスクの効率と性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-02-29T18:45:56Z) - Scalable Volt-VAR Optimization using RLlib-IMPALA Framework: A
Reinforcement Learning Approach [11.11570399751075]
本研究は, 深層強化学習(DRL)の可能性を活用した新しい枠組みを提案する。
DRLエージェントをRAYプラットフォームに統合することにより、RAYのリソースを効率的に利用してシステム適応性と制御を改善する新しいフレームワークであるRLlib-IMPALAの開発が容易になる。
論文 参考訳(メタデータ) (2024-02-24T23:25:35Z) - Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and
Research Opportunities [63.258517066104446]
進化的アルゴリズムの構成要素として統合された強化学習は,近年,優れた性能を示している。
本稿では,RL-EA 統合手法,RL-EA が採用する RL-EA 支援戦略,および既存文献による適用について論じる。
RL-EAセクションの適用例では、RL-EAのいくつかのベンチマークおよび様々な公開データセットにおける優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-25T15:06:05Z) - BiERL: A Meta Evolutionary Reinforcement Learning Framework via Bilevel
Optimization [34.24884427152513]
双レベル最適化(BiERL)による一般的なメタERLフレームワークを提案する。
我々は、内部レベルの進化した経験を情報的人口表現に組み込むエレガントなメタレベルアーキテクチャを設計する。
我々は MuJoCo と Box2D タスクの広範な実験を行い、一般的なフレームワークとして BiERL が様々なベースラインを上回り、ERL アルゴリズムの多様性の学習性能を一貫して向上することを検証する。
論文 参考訳(メタデータ) (2023-08-01T09:31:51Z) - Karolos: An Open-Source Reinforcement Learning Framework for Robot-Task
Environments [0.3867363075280544]
強化学習(RL)研究において、シミュレーションはアルゴリズム間のベンチマークを可能にする。
本稿では,ロボット応用のためのフレームワークであるKarolosを紹介する。
コードはオープンソースでGitHubに公開されており、ロボット工学におけるRLアプリケーションの研究を促進することを目的としている。
論文 参考訳(メタデータ) (2022-12-01T23:14:02Z) - A General Framework for Sample-Efficient Function Approximation in
Reinforcement Learning [132.45959478064736]
モデルベースとモデルフリー強化学習を統合した汎用フレームワークを提案する。
最適化に基づく探索のための分解可能な構造特性を持つ新しい推定関数を提案する。
本フレームワークでは,OPERA (Optimization-based Exploration with Approximation) という新しいサンプル効率アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-30T17:59:16Z) - LCRL: Certified Policy Synthesis via Logically-Constrained Reinforcement
Learning [78.2286146954051]
LCRLは未知決定プロセス(MDP)上でのモデルフリー強化学習(RL)アルゴリズムを実装している
本稿では,LCRLの適用性,使いやすさ,拡張性,性能を示すケーススタディを提案する。
論文 参考訳(メタデータ) (2022-09-21T13:21:00Z) - Heuristic-Guided Reinforcement Learning [31.056460162389783]
Tabula rasa RLアルゴリズムは、意思決定タスクの地平線に合わせてスケールする環境相互作用や計算を必要とする。
我々のフレームワークは、有限の相互作用予算の下でRLのバイアスと分散を制御するための地平線に基づく正規化と見なすことができる。
特に,従来の知識を超越してRLエージェントを外挿できる「改良可能な」新しい概念を導入する。
論文 参考訳(メタデータ) (2021-06-05T00:04:09Z) - Review, Analysis and Design of a Comprehensive Deep Reinforcement
Learning Framework [6.527722484694189]
本稿では,コネクテッド・ザ・ドット・ディープ・RLアーキテクチャの設計において重要な役割を果たす包括的ソフトウェア・フレームワークを提案する。
我々は、柔軟性、堅牢性、スケーラビリティを厳格に保証する、深いRLベースのソフトウェアフレームワークを設計、開発しました。
論文 参考訳(メタデータ) (2020-02-27T02:38:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。