On the Trade-offs between Adversarial Robustness and Actionable Explanations
- URL: http://arxiv.org/abs/2309.16452v2
- Date: Wed, 24 Jul 2024 03:32:09 GMT
- Title: On the Trade-offs between Adversarial Robustness and Actionable Explanations
- Authors: Satyapriya Krishna, Chirag Agarwal, Himabindu Lakkaraju,
- Abstract summary: We make one of the first attempts at studying the impact of adversarially robust models on actionable explanations.
We derive theoretical bounds on the differences between the cost and the validity of recourses generated by state-of-the-art algorithms.
Our results show that adversarially robust models significantly increase the cost and reduce the validity of the resulting recourses.
- Score: 32.05150063480917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As machine learning models are increasingly being employed in various high-stakes settings, it becomes important to ensure that predictions of these models are not only adversarially robust, but also readily explainable to relevant stakeholders. However, it is unclear if these two notions can be simultaneously achieved or if there exist trade-offs between them. In this work, we make one of the first attempts at studying the impact of adversarially robust models on actionable explanations which provide end users with a means for recourse. We theoretically and empirically analyze the cost (ease of implementation) and validity (probability of obtaining a positive model prediction) of recourses output by state-of-the-art algorithms when the underlying models are adversarially robust vs. non-robust. More specifically, we derive theoretical bounds on the differences between the cost and the validity of the recourses generated by state-of-the-art algorithms for adversarially robust vs. non-robust linear and non-linear models. Our empirical results with multiple real-world datasets validate our theoretical results and show the impact of varying degrees of model robustness on the cost and validity of the resulting recourses. Our analyses demonstrate that adversarially robust models significantly increase the cost and reduce the validity of the resulting recourses, thus shedding light on the inherent trade-offs between adversarial robustness and actionable explanations.
Related papers
- Adversarial Fine-tuning of Compressed Neural Networks for Joint Improvement of Robustness and Efficiency [3.3490724063380215]
Adrial training has been presented as a mitigation strategy which can result in more robust models.
We explore the effects of two different model compression methods -- structured weight pruning and quantization -- on adversarial robustness.
We show that adversarial fine-tuning of compressed models can achieve robustness performance comparable to adversarially trained models.
arXiv Detail & Related papers (2024-03-14T14:34:25Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Fairness Increases Adversarial Vulnerability [50.90773979394264]
This paper shows the existence of a dichotomy between fairness and robustness, and analyzes when achieving fairness decreases the model robustness to adversarial samples.
Experiments on non-linear models and different architectures validate the theoretical findings in multiple vision domains.
The paper proposes a simple, yet effective, solution to construct models achieving good tradeoffs between fairness and robustness.
arXiv Detail & Related papers (2022-11-21T19:55:35Z) - Probabilistically Robust Recourse: Navigating the Trade-offs between
Costs and Robustness in Algorithmic Recourse [34.39887495671287]
We propose an objective function which simultaneously minimizes the gap between the achieved (resulting) and desired recourse invalidation rates.
We develop novel theoretical results to characterize the recourse invalidation rates corresponding to any given instance.
Experimental evaluation with multiple real world datasets demonstrates the efficacy of the proposed framework.
arXiv Detail & Related papers (2022-03-13T21:39:24Z) - Robustness and Accuracy Could Be Reconcilable by (Proper) Definition [109.62614226793833]
The trade-off between robustness and accuracy has been widely studied in the adversarial literature.
We find that it may stem from the improperly defined robust error, which imposes an inductive bias of local invariance.
By definition, SCORE facilitates the reconciliation between robustness and accuracy, while still handling the worst-case uncertainty.
arXiv Detail & Related papers (2022-02-21T10:36:09Z) - Towards Robust and Reliable Algorithmic Recourse [11.887537452826624]
We propose a novel framework, RObust Algorithmic Recourse (ROAR), that leverages adversarial training for finding recourses that are robust to model shifts.
We also carry out detailed theoretical analysis which underscores the importance of constructing recourses that are robust to model shifts.
arXiv Detail & Related papers (2021-02-26T17:38:52Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Decomposed Adversarial Learned Inference [118.27187231452852]
We propose a novel approach, Decomposed Adversarial Learned Inference (DALI)
DALI explicitly matches prior and conditional distributions in both data and code spaces.
We validate the effectiveness of DALI on the MNIST, CIFAR-10, and CelebA datasets.
arXiv Detail & Related papers (2020-04-21T20:00:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.