Towards Robust and Reliable Algorithmic Recourse
- URL: http://arxiv.org/abs/2102.13620v1
- Date: Fri, 26 Feb 2021 17:38:52 GMT
- Title: Towards Robust and Reliable Algorithmic Recourse
- Authors: Sohini Upadhyay, Shalmali Joshi, Himabindu Lakkaraju
- Abstract summary: We propose a novel framework, RObust Algorithmic Recourse (ROAR), that leverages adversarial training for finding recourses that are robust to model shifts.
We also carry out detailed theoretical analysis which underscores the importance of constructing recourses that are robust to model shifts.
- Score: 11.887537452826624
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As predictive models are increasingly being deployed in high-stakes decision
making (e.g., loan approvals), there has been growing interest in post hoc
techniques which provide recourse to affected individuals. These techniques
generate recourses under the assumption that the underlying predictive model
does not change. However, in practice, models are often regularly updated for a
variety of reasons (e.g., dataset shifts), thereby rendering previously
prescribed recourses ineffective. To address this problem, we propose a novel
framework, RObust Algorithmic Recourse (ROAR), that leverages adversarial
training for finding recourses that are robust to model shifts. To the best of
our knowledge, this work proposes the first solution to this critical problem.
We also carry out detailed theoretical analysis which underscores the
importance of constructing recourses that are robust to model shifts: 1) we
derive a lower bound on the probability of invalidation of recourses generated
by existing approaches which are not robust to model shifts. 2) we prove that
the additional cost incurred due to the robust recourses output by our
framework is bounded. Experimental evaluation on multiple synthetic and
real-world datasets demonstrates the efficacy of the proposed framework and
supports our theoretical findings.
Related papers
- Rigorous Probabilistic Guarantees for Robust Counterfactual Explanations [80.86128012438834]
We show for the first time that computing the robustness of counterfactuals with respect to plausible model shifts is NP-complete.
We propose a novel probabilistic approach which is able to provide tight estimates of robustness with strong guarantees.
arXiv Detail & Related papers (2024-07-10T09:13:11Z) - Source-Free Unsupervised Domain Adaptation with Hypothesis Consolidation
of Prediction Rationale [53.152460508207184]
Source-Free Unsupervised Domain Adaptation (SFUDA) is a challenging task where a model needs to be adapted to a new domain without access to target domain labels or source domain data.
This paper proposes a novel approach that considers multiple prediction hypotheses for each sample and investigates the rationale behind each hypothesis.
To achieve the optimal performance, we propose a three-step adaptation process: model pre-adaptation, hypothesis consolidation, and semi-supervised learning.
arXiv Detail & Related papers (2024-02-02T05:53:22Z) - Coverage-Validity-Aware Algorithmic Recourse [23.643366441803796]
We propose a novel framework to generate a model-agnostic recourse that exhibits robustness to model shifts.
Our framework first builds a coverage-validity-aware linear surrogate of the nonlinear (black-box) model.
We show that our surrogate pushes the approximate hyperplane intuitively, facilitating not only robust but also interpretable recourses.
arXiv Detail & Related papers (2023-11-19T15:21:49Z) - On the Trade-offs between Adversarial Robustness and Actionable Explanations [32.05150063480917]
We make one of the first attempts at studying the impact of adversarially robust models on actionable explanations.
We derive theoretical bounds on the differences between the cost and the validity of recourses generated by state-of-the-art algorithms.
Our results show that adversarially robust models significantly increase the cost and reduce the validity of the resulting recourses.
arXiv Detail & Related papers (2023-09-28T13:59:50Z) - Introducing Foundation Models as Surrogate Models: Advancing Towards
More Practical Adversarial Attacks [15.882687207499373]
No-box adversarial attacks are becoming more practical and challenging for AI systems.
This paper recasts adversarial attack as a downstream task by introducing foundational models as surrogate models.
arXiv Detail & Related papers (2023-07-13T08:10:48Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - CREST: A Joint Framework for Rationalization and Counterfactual Text
Generation [5.606679908174783]
We introduce CREST (ContRastive Edits with Sparse raTionalization), a framework for selective rationalization and counterfactual text generation.
CREST generates valid counterfactuals that are more natural than those produced by previous methods.
New loss function that leverages CREST counterfactuals to regularize selective rationales improves both model robustness and rationale quality.
arXiv Detail & Related papers (2023-05-26T16:34:58Z) - Leaving the Nest: Going Beyond Local Loss Functions for
Predict-Then-Optimize [57.22851616806617]
We show that our method achieves state-of-the-art results in four domains from the literature.
Our approach outperforms the best existing method by nearly 200% when the localness assumption is broken.
arXiv Detail & Related papers (2023-05-26T11:17:45Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Probabilistically Robust Recourse: Navigating the Trade-offs between
Costs and Robustness in Algorithmic Recourse [34.39887495671287]
We propose an objective function which simultaneously minimizes the gap between the achieved (resulting) and desired recourse invalidation rates.
We develop novel theoretical results to characterize the recourse invalidation rates corresponding to any given instance.
Experimental evaluation with multiple real world datasets demonstrates the efficacy of the proposed framework.
arXiv Detail & Related papers (2022-03-13T21:39:24Z) - On the model-based stochastic value gradient for continuous
reinforcement learning [50.085645237597056]
We show that simple model-based agents can outperform state-of-the-art model-free agents in terms of both sample-efficiency and final reward.
Our findings suggest that model-based policy evaluation deserves closer attention.
arXiv Detail & Related papers (2020-08-28T17:58:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.