論文の概要: Ultra-low-power Image Classification on Neuromorphic Hardware
- arxiv url: http://arxiv.org/abs/2309.16795v2
- Date: Fri, 21 Jun 2024 22:34:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 04:48:52.729965
- Title: Ultra-low-power Image Classification on Neuromorphic Hardware
- Title(参考訳): ニューロモルフィックハードウェアの超低消費電力画像分類
- Authors: Gregor Lenz, Garrick Orchard, Sadique Sheik,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、時間的および空間的間隔を利用して超低消費電力の応用を約束する。
空間的特徴に大きく依存する視覚タスクの時間的バックプロパゲーションを用いたSNNの訓練には,計算コストがかかる。
本稿では,最初のスパイクまでの時間に基づく時間的ANN-to-SNN変換法であるQuartzを提案する。
- 参考スコア(独自算出の注目度): 3.784976081087904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks (SNNs) promise ultra-low-power applications by exploiting temporal and spatial sparsity. The number of binary activations, called spikes, is proportional to the power consumed when executed on neuromorphic hardware. Training such SNNs using backpropagation through time for vision tasks that rely mainly on spatial features is computationally costly. Training a stateless artificial neural network (ANN) to then convert the weights to an SNN is a straightforward alternative when it comes to image recognition datasets. Most conversion methods rely on rate coding in the SNN to represent ANN activation, which uses enormous amounts of spikes and, therefore, energy to encode information. Recently, temporal conversion methods have shown promising results requiring significantly fewer spikes per neuron, but sometimes complex neuron models. We propose a temporal ANN-to-SNN conversion method, which we call Quartz, that is based on the time to first spike (TTFS). Quartz achieves high classification accuracy and can be easily implemented on neuromorphic hardware while using the least amount of synaptic operations and memory accesses. It incurs a cost of two additional synapses per neuron compared to previous temporal conversion methods, which are readily available on neuromorphic hardware. We benchmark Quartz on MNIST, CIFAR10, and ImageNet in simulation to show the benefits of our method and follow up with an implementation on Loihi, a neuromorphic chip by Intel. We provide evidence that temporal coding has advantages in terms of power consumption, throughput, and latency for similar classification accuracy. Our code and models are publicly available.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、時間的および空間的間隔を利用して超低消費電力の応用を約束する。
スパイクと呼ばれるバイナリアクティベーションの数は、ニューロモルフィックハードウェア上で実行されるときに消費される電力に比例する。
空間的特徴に大きく依存する視覚タスクの時間的バックプロパゲーションを用いたSNNの訓練には,計算コストがかかる。
画像認識データセットに関しては、ステートレスな人工知能ニューラルネットワーク(ANN)をトレーニングして、ウェイトをSNNに変換するのが簡単な方法です。
ほとんどの変換法は、ANNのアクティベーションを表すためにSNNのレートコーディングに依存している。
近年、時間変換法は、ニューロン毎のスパイクを著しく少なくするが、複雑なニューロンモデルを必要とする有望な結果を示している。
本稿では、最初のスパイク時間(TTFS)に基づいて、Quartzと呼ぶ時間的ANN-to-SNN変換手法を提案する。
Quartzは高い分類精度を実現し、最小のシナプス演算とメモリアクセスを使用しながら、ニューロモルフィックハードウェアで容易に実装できる。
これは、ニューロモルフィックハードウェアで容易に利用できる以前の時間変換法と比較して、ニューロン毎に2つのシナプスのコストがかかる。
We benchmark Quartz on MNIST, CIFAR10, ImageNet in Simulation to show the benefit of our method and follow up on the implementation on Loihi, a neuromorphic chip by Intel。
我々は、時間符号化が電力消費、スループット、遅延の点で、類似の分類精度に有利であることを示す。
私たちのコードとモデルは公開されています。
関連論文リスト
- Accurate Mapping of RNNs on Neuromorphic Hardware with Adaptive Spiking Neurons [2.9410174624086025]
我々は、SigmaDelta$-low-pass RNN(lpRNN)を、レートベースのRNNをスパイクニューラルネットワーク(SNN)にマッピングするために提示する。
適応スパイキングニューロンモデルは、$SigmaDelta$-modulationを使って信号を符号化し、正確なマッピングを可能にする。
我々は、Intelのニューロモルフィック研究チップLoihiにおけるlpRNNの実装を実演する。
論文 参考訳(メタデータ) (2024-07-18T14:06:07Z) - Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern
Recognition on Neuromorphic Hardware [50.380319968947035]
近年の深層学習手法は,そのようなタスクにおいて精度が向上しているが,従来の組込みソリューションへの実装は依然として計算量が非常に高く,エネルギーコストも高い。
文字読み込みによるエッジにおける触覚パターン認識のための新しいベンチマークを提案する。
フィードフォワードとリカレントスパイキングニューラルネットワーク(SNN)を、サロゲート勾配の時間によるバックプロパゲーションを用いてオフラインでトレーニングし比較し、効率的な推論のためにIntel Loihimorphicチップにデプロイした。
LSTMは14%の精度で繰り返しSNNより優れており、Loihi上での繰り返しSNNは237倍のエネルギーである。
論文 参考訳(メタデータ) (2022-05-30T14:30:45Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Event-based Video Reconstruction via Potential-assisted Spiking Neural
Network [48.88510552931186]
バイオインスパイアされたニューラルネットワークは、イベント駆動ハードウェア上での計算効率の向上につながる可能性がある。
完全スパイキングニューラルネットワーク(EVSNN)に基づくイベントベースビデオ再構成フレームワークを提案する。
スパイクニューロンは、そのような時間依存タスクを完了させるために有用な時間情報(メモリ)を格納する可能性がある。
論文 参考訳(メタデータ) (2022-01-25T02:05:20Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - Training Energy-Efficient Deep Spiking Neural Networks with Single-Spike
Hybrid Input Encoding [5.725845886457027]
スパイキングニューラルネットワーク(SNN)は、イベント駆動型ニューロモルフィックハードウェアにおいて高い計算効率を提供する。
SNNは、非効率な入力符号化とトレーニング技術により、高い推論遅延に悩まされる。
本稿では低遅延エネルギー効率SNNのためのトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-26T06:16:40Z) - A Spiking Neural Network for Image Segmentation [3.4998703934432682]
我々は,深層ニューラルネットワーク(ANN)アーキテクチャのU-Netを,Nengoフレームワークを用いたスパイキングニューラルネットワーク(SNN)アーキテクチャに変換する。
レートベースモデルとスパイクベースモデルの両方がトレーニングされ、パフォーマンスとパワーのベンチマークに最適化されている。
Intel Loihiのニューロモルフィックチップのニューロモルフィック実装は、従来のハードウェアよりも2倍エネルギー効率が高い。
論文 参考訳(メタデータ) (2021-06-16T16:23:18Z) - Sparse Spiking Gradient Descent [2.741266294612776]
本稿では,従来の手法と同等あるいはより高精度なSNNバックプロパゲーションアルゴリズムを提案する。
本稿では,複雑性の異なる実データセットに対する本手法の有効性を示す。
論文 参考訳(メタデータ) (2021-05-18T20:00:55Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
スパイキングニューラルネットワーク(英: Spiking Neural Networks、SNN)は、神経型ネットワークの一種である。
SNNはスパースであり、重量はごくわずかであり、通常、より電力集約的な乗算および累積演算の代わりに追加操作のみを使用する。
本研究では,TTFS符号化ニューロモルフィックシステムの限界を克服することを目的としている。
論文 参考訳(メタデータ) (2020-06-03T15:55:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。