論文の概要: Canonic Signed Spike Coding for Efficient Spiking Neural Networks
- arxiv url: http://arxiv.org/abs/2408.17245v2
- Date: Wed, 04 Dec 2024 03:11:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:05:43.105219
- Title: Canonic Signed Spike Coding for Efficient Spiking Neural Networks
- Title(参考訳): 効率的なスパイクニューラルネットワークのための高調波署名スパイク符号化
- Authors: Yiwen Gu, Junchuan Gu, Haibin Shen, Kejie Huang,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、生物学的ニューロンのスパイキング行動を模倣し、ニューラルコンピューティングと人工知能の進歩において重要な役割を果たすと期待されている。
ANN(Artificial Neural Networks)からSNN(SNN)への変換は最も広く使われているトレーニング手法であり、その結果のSNNが大規模データセット上でANNと同等に動作することを保証する。
現在のスキームは、通常、スパイクカウントまたはタイピングのタイミングを使用しており、これはANNのアクティベーションと線形に関連しており、必要な時間ステップの数を増やす。
我々は新しいCanononic Signed Spike (CSS) 符号化を提案する。
- 参考スコア(独自算出の注目度): 7.524721345903027
- License:
- Abstract: Spiking Neural Networks (SNNs) seek to mimic the spiking behavior of biological neurons and are expected to play a key role in the advancement of neural computing and artificial intelligence. The conversion of Artificial Neural Networks (ANNs) to SNNs is the most widely used training method, which ensures that the resulting SNNs perform comparably to ANNs on large-scale datasets. The efficiency of these conversion-based SNNs is often determined by the neural coding schemes. Current schemes typically use spike count or timing for encoding, which is linearly related to ANN activations and increases the required number of time steps. To address this limitation, we propose a novel Canonic Signed Spike (CSS) coding scheme. This method incorporates non-linearity into the encoding process by weighting spikes at each step of neural computation, thereby increasing the information encoded in spikes. We identify the temporal coupling phenomenon arising from weighted spikes and introduce negative spikes along with a Ternary Self-Amplifying (TSA) neuron model to mitigate the issue. A one-step silent period is implemented during neural computation, achieving high accuracy with low latency. We apply the proposed methods to directly convert full-precision ANNs and evaluate performance on CIFAR-10 and ImageNet datasets. Our experimental results demonstrate that the CSS coding scheme effectively compresses time steps for coding and reduces inference latency with minimal conversion loss.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、生物学的ニューロンのスパイキング行動を模倣し、ニューラルコンピューティングと人工知能の進歩において重要な役割を果たすと期待されている。
ANN(Artificial Neural Networks)からSNN(SNN)への変換は最も広く使われているトレーニング手法であり、その結果のSNNが大規模データセット上でANNと同等に動作することを保証する。
これらの変換ベースのSNNの効率は、しばしばニューラルコーディングスキームによって決定される。
現在のスキームは、通常、スパイクカウントまたはタイピングのタイミングを使用しており、これはANNのアクティベーションと線形に関連しており、必要な時間ステップの数を増やす。
この制限に対処するため,我々はCanononic Signed Spike (CSS) 符号化方式を提案する。
この方法は、ニューラルネットワークの各ステップでスパイクを重み付け、スパイクに符号化された情報を増やすことによって、非線型性を符号化プロセスに組み込む。
重み付けスパイクから生じる時間的結合現象を同定し、その問題を緩和するためにTSAニューロンモデルとともに負のスパイクを導入する。
1ステップのサイレント期間は、ニューラルネットワーク中に実装され、低レイテンシで高い精度を達成する。
提案手法を適用し,CIFAR-10 および ImageNet データセットの性能評価を行う。
実験により、CSS符号化方式は、符号化の時間ステップを効果的に圧縮し、変換損失を最小限に抑え、推論遅延を低減できることを示した。
関連論文リスト
- Time-independent Spiking Neuron via Membrane Potential Estimation for Efficient Spiking Neural Networks [4.142699381024752]
スパイキングニューラルネットワーク(SNN)の計算的非効率性は、主に膜電位の逐次更新によるものである。
スパイキングニューロンの並列計算法である膜電位推定並列スパイキングニューロン(MPE-PSN)を提案する。
提案手法では,特に高次ニューロン密度条件下での計算効率の向上が期待できる。
論文 参考訳(メタデータ) (2024-09-08T05:14:22Z) - Stochastic Spiking Neural Networks with First-to-Spike Coding [7.955633422160267]
スパイキングニューラルネットワーク (SNN) は、その生物の楽観性とエネルギー効率で知られている。
本研究では,SNNアーキテクチャにおける新しい計算手法と情報符号化方式の融合について検討する。
提案手法のトレードオフを,精度,推論遅延,スパイク空間性,エネルギー消費,データセットの観点から検討する。
論文 参考訳(メタデータ) (2024-04-26T22:52:23Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
スパイキングニューラルネットワーク(SNN)は、高エネルギー効率のニューロモルフィックチップに脳にインスパイアされたインテリジェンスを実現することを目的としている。
我々は、ニューロモルフィックデータセットの事前処理、深層SNNの構築、パラメータの最適化、およびニューロモルフィックチップへのSNNのデプロイのためのフルスタックツールキットをコントリビュートする。
論文 参考訳(メタデータ) (2023-10-25T13:15:17Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Desire Backpropagation: A Lightweight Training Algorithm for Multi-Layer
Spiking Neural Networks based on Spike-Timing-Dependent Plasticity [13.384228628766236]
スパイキングニューラルネットワーク(SNN)は、従来の人工ニューラルネットワークの代替となる。
本研究は,隠されたニューロンを含むすべてのニューロンの所望のスパイク活性を導出する方法である欲求バックプロパゲーションを提示する。
我々はMNISTとFashion-MNISTを分類するために3層ネットワークを訓練し、それぞれ98.41%と87.56%の精度に達した。
論文 参考訳(メタデータ) (2022-11-10T08:32:13Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Effective and Efficient Computation with Multiple-timescale Spiking
Recurrent Neural Networks [0.9790524827475205]
本稿では,新しいタイプの適応スパイクリカレントニューラルネットワーク(SRNN)が,最先端の性能を実現する方法を示す。
我々は、従来のRNNよりも難しいタスクにおいて、SRNNの100倍のエネルギー改善を計算します。
論文 参考訳(メタデータ) (2020-05-24T01:04:53Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。