論文の概要: Beyond Gut Feel: Using Time Series Transformers to Find Investment Gems
- arxiv url: http://arxiv.org/abs/2309.16888v3
- Date: Fri, 14 Jun 2024 11:30:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 19:53:15.398324
- Title: Beyond Gut Feel: Using Time Series Transformers to Find Investment Gems
- Title(参考訳): Beyond Gut Feel: 時系列トランスフォーマーを使って投資Gemを見つける
- Authors: Lele Cao, Gustaf Halvardsson, Andrew McCornack, Vilhelm von Ehrenheim, Pawel Herman,
- Abstract要約: 本稿では,PE(Private Equity)業界におけるデータ駆動アプローチの適用拡大について論じる。
本稿では、関連するアプローチの総合的なレビューを行い、候補企業の成功可能性を予測するための新しいアプローチを提案する。
3つの一般的なベースラインに向けてベンチマークした2つの実世界の投資タスクに関する実験は、我々のアプローチの有効性を実証した。
- 参考スコア(独自算出の注目度): 1.7343080574639578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the growing application of data-driven approaches within the Private Equity (PE) industry, particularly in sourcing investment targets (i.e., companies) for Venture Capital (VC) and Growth Capital (GC). We present a comprehensive review of the relevant approaches and propose a novel approach leveraging a Transformer-based Multivariate Time Series Classifier (TMTSC) for predicting the success likelihood of any candidate company. The objective of our research is to optimize sourcing performance for VC and GC investments by formally defining the sourcing problem as a multivariate time series classification task. We consecutively introduce the key components of our implementation which collectively contribute to the successful application of TMTSC in VC/GC sourcing: input features, model architecture, optimization target, and investor-centric data processing. Our extensive experiments on two real-world investment tasks, benchmarked towards three popular baselines, demonstrate the effectiveness of our approach in improving decision making within the VC and GC industry.
- Abstract(参考訳): 本稿では、PE(Private Equity)業界におけるデータ駆動アプローチの適用拡大、特にVC(Venture Capital)とGC(Growth Capital)の投資目標(企業)のソーシングについて論じる。
本稿では,トランスフォーマーをベースとした多変量時系列分類器(TMTSC)を用いた新たなアプローチを提案する。
本研究の目的は、多変量時系列分類タスクとしてソーシング問題を正式に定義することにより、VCおよびGC投資のソーシング性能を最適化することである。
本稿では,VC/GC ソーシングにおける TMTSC の適用に一括して貢献する実装の重要コンポーネントについて,入力機能,モデルアーキテクチャ,最適化ターゲット,投資家中心のデータ処理について紹介する。
3つの一般的なベースラインに向けてベンチマークした2つの実世界の投資タスクに関する大規模な実験は、VCとGC業界における意思決定の改善における我々のアプローチの有効性を実証しています。
関連論文リスト
- Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の開発において、急速に重要なパラダイムへと成長してきた。
本稿では,RAGシステムの信頼性を,事実性,堅牢性,公正性,透明性,説明責任,プライバシの6つの面で評価する統一的な枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-16T09:06:44Z) - Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization [49.396692286192206]
本研究では,ESG状態と目的を取り入れたポートフォリオ最適化のための深層強化学習について検討する。
以上の結果から,ポートフォリオアロケーションに対する平均分散アプローチに対して,深層強化学習政策が競争力を発揮する可能性が示唆された。
論文 参考訳(メタデータ) (2024-03-25T12:04:03Z) - Multimodal Gen-AI for Fundamental Investment Research [2.559302299676632]
本報告では、従来の意思決定プロセスを再考する金融投資業界における変革的イニシアティブについて概説する。
基礎モデル(Llama2)上での微調整手法の有効性を評価し,アプリケーションレベルの目標を達成する。
このプロジェクトには、調査報告、投資メモ、市場ニュース、広範な時系列市場データなど、さまざまなコーパスデータセットが含まれている。
論文 参考訳(メタデータ) (2023-12-24T03:35:13Z) - Startup success prediction and VC portfolio simulation using CrunchBase
data [1.7897779505837144]
本稿では、主要な成功のマイルストーンを予測することを目的とした、シリーズBおよびシリーズCの投資ステージにおけるスタートアップに焦点を当てる。
スタートアップの成功を予測するための新しいディープラーニングモデルを導入し、資金調達指標、創業者の特徴、業界カテゴリなど、さまざまな要素を統合する。
私たちの研究は、スタートアップの成功を予測する上で、ディープラーニングモデルと代替の非構造化データによるかなりの可能性を実証しています。
論文 参考訳(メタデータ) (2023-09-27T10:22:37Z) - Portfolio Selection via Topological Data Analysis [2.3901301169141056]
本稿では、共通株式の投資ポートフォリオを構築するための2段階の方法を提案する。
この方法は時系列表現の生成とその後のクラスタリングを含む。
実験の結果,提案システムは他の手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-08-15T09:36:43Z) - ChatGPT-based Investment Portfolio Selection [21.24186888129542]
投資ポートフォリオの選択において、ChatGPTのような生成AIモデルの可能性を探る。
私たちはChatGPTを使って、投資に魅力的なS&P500市場指数から株式の宇宙を得ています。
以上の結果から,ChatGPTは株式選択に有効であるが,ポートフォリオ内の株式に最適な重み付けを割り当てるには適さない可能性が示唆された。
論文 参考訳(メタデータ) (2023-08-11T17:48:17Z) - E2EAI: End-to-End Deep Learning Framework for Active Investing [123.52358449455231]
本稿では, ファクタ選択, ファクタ組み合わせ, 株式選択, ポートフォリオ構築を通じて, ファクター投資のほぼ全過程をカバーするE2Eを提案する。
実際の株式市場データの実験は、アクティブ投資におけるエンドツーエンドのディープ・リーン・フレームワークの有効性を示している。
論文 参考訳(メタデータ) (2023-05-25T10:27:07Z) - Dynamic Resource Allocation for Metaverse Applications with Deep
Reinforcement Learning [64.75603723249837]
そこで本研究では,Metaverse アプリケーション用の異なるタイプのリソースを動的に管理・割り当てする新しいフレームワークを提案する。
まず,アプリケーション間で共通関数を共有できるMetaInstancesという,アプリケーションをグループに分割する効果的なソリューションを提案する。
そこで我々は,要求到着プロセスとアプリケーション離脱プロセスのリアルタイム,動的,不確実な特性を捉えるために,セミマルコフ決定プロセスに基づくフレームワークを開発する。
論文 参考訳(メタデータ) (2023-02-27T00:30:01Z) - Entity-Graph Enhanced Cross-Modal Pretraining for Instance-level Product
Retrieval [152.3504607706575]
本研究の目的は, 細粒度製品カテゴリを対象とした, 弱制御型マルチモーダル・インスタンスレベルの製品検索である。
まず、Product1Mデータセットをコントリビュートし、2つの実際のインスタンスレベルの検索タスクを定義します。
我々は、マルチモーダルデータから重要な概念情報を組み込むことができるより効果的なクロスモーダルモデルを訓練するために活用する。
論文 参考訳(メタデータ) (2022-06-17T15:40:45Z) - A Data-Driven Framework for Identifying Investment Opportunities in
Private Equity [0.0]
本稿では、投資機会の自動スクリーニングのためのフレームワークを提案する。
このフレームワークは、企業の財務的および管理的立場を評価するために、複数のソースからデータを引き出す。
次に、説明可能な人工知能(XAI)エンジンを使用して投資勧告を提案する。
論文 参考訳(メタデータ) (2022-04-04T21:28:34Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
ポートフォリオマネジメント(PM)は、最大利益や最小リスクといった投資目標を達成することを目的としている。
本稿では,PMのための新しいステート拡張RLフレームワークであるSARLを提案する。
当社の枠組みは, 金融PMにおける2つのユニークな課題に対処することを目的としている。(1) データの異種データ -- 資産毎の収集情報は通常, 多様性, ノイズ, 不均衡(ニュース記事など), (2) 環境の不確実性 -- 金融市場は多様で非定常である。
論文 参考訳(メタデータ) (2020-02-09T08:10:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。