論文の概要: Deep Reinforcement Learning for Investor-Specific Portfolio Optimization: A Volatility-Guided Asset Selection Approach
- arxiv url: http://arxiv.org/abs/2505.03760v1
- Date: Sun, 20 Apr 2025 10:17:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-11 11:26:45.199494
- Title: Deep Reinforcement Learning for Investor-Specific Portfolio Optimization: A Volatility-Guided Asset Selection Approach
- Title(参考訳): ポートフォリオ最適化のための深層強化学習:ボラティリティ誘導アセット選択アプローチ
- Authors: Arishi Orra, Aryan Bhambu, Himanshu Choudhary, Manoj Thakur, Selvaraju Natarajan,
- Abstract要約: 本研究では,投資家のリスクプロファイルに基づいてポートフォリオを動的に構築するボラティリティ誘導型ポートフォリオ最適化フレームワークを提案する。
提案手法の有効性はダウ30ドル指数の株を用いて確立された。
- 参考スコア(独自算出の注目度): 2.2835610890984164
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Portfolio optimization requires dynamic allocation of funds by balancing the risk and return tradeoff under dynamic market conditions. With the recent advancements in AI, Deep Reinforcement Learning (DRL) has gained prominence in providing adaptive and scalable strategies for portfolio optimization. However, the success of these strategies depends not only on their ability to adapt to market dynamics but also on the careful pre-selection of assets that influence overall portfolio performance. Incorporating the investor's preference in pre-selecting assets for a portfolio is essential in refining their investment strategies. This study proposes a volatility-guided DRL-based portfolio optimization framework that dynamically constructs portfolios based on investors' risk profiles. The Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model is utilized for volatility forecasting of stocks and categorizes them based on their volatility as aggressive, moderate, and conservative. The DRL agent is then employed to learn an optimal investment policy by interacting with the historical market data. The efficacy of the proposed methodology is established using stocks from the Dow $30$ index. The proposed investor-specific DRL-based portfolios outperformed the baseline strategies by generating consistent risk-adjusted returns.
- Abstract(参考訳): ポートフォリオ最適化は、動的な市場条件下でのリスクとリターントレードオフのバランスをとることによって、資金の動的配分を必要とする。
AIの最近の進歩により、ポートフォリオ最適化のための適応的でスケーラブルな戦略を提供することで、Deep Reinforcement Learning(DRL)が注目されている。
しかし、これらの戦略の成功は、市場ダイナミクスに適応する能力だけでなく、ポートフォリオ全体のパフォーマンスに影響を与える資産の慎重な事前選択にも依存する。
ポートフォリオの事前選択資産に対する投資家の選好を組み込むことは、投資戦略の洗練に不可欠である。
本研究では、投資家のリスクプロファイルに基づいてポートフォリオを動的に構築するボラティリティ誘導DRLに基づくポートフォリオ最適化フレームワークを提案する。
一般化自己回帰条件整合性(GARCH)モデルは、株価のボラティリティ予測に利用され、そのボラティリティに基づいて、攻撃的、中道的、保守的と分類される。
DRLエージェントは、過去の市場データと対話して最適な投資政策を学ぶために使用される。
提案手法の有効性はダウ30ドル指数の株を用いて確立された。
提案された投資家固有のDRLベースのポートフォリオは、一貫したリスク調整されたリターンを生成することによってベースライン戦略を上回った。
関連論文リスト
- $α$-DPO: Adaptive Reward Margin is What Direct Preference Optimization Needs [45.46582930202524]
$alpha$-DPOは、大規模言語モデルの適応的優先最適化アルゴリズムである。
ポリシーモデルと参照モデルのバランスを取り、パーソナライズされた報酬マージンを達成する。
さまざまなモデル設定でDPOとSimPOを一貫して上回ります。
論文 参考訳(メタデータ) (2024-10-14T04:29:57Z) - Explainable Post hoc Portfolio Management Financial Policy of a Deep Reinforcement Learning agent [44.99833362998488]
我々はポートフォリオ管理のための新しい説明可能な深層強化学習(XDRL)アプローチを開発した。
方法論を実践することにより、エージェントの行動を予測する時間内に解釈し、投資政策の要件に従うかどうかを評価することができる。
論文 参考訳(メタデータ) (2024-07-19T17:40:39Z) - Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization [49.396692286192206]
本研究では,ESG状態と目的を取り入れたポートフォリオ最適化のための深層強化学習について検討する。
以上の結果から,ポートフォリオアロケーションに対する平均分散アプローチに対して,深層強化学習政策が競争力を発揮する可能性が示唆された。
論文 参考訳(メタデータ) (2024-03-25T12:04:03Z) - Combining Transformer based Deep Reinforcement Learning with
Black-Litterman Model for Portfolio Optimization [0.0]
モデルフリーのアルゴリズムとして、深層強化学習(DRL)エージェントは、教師なしの方法で環境と対話することで学習し、決定する。
DRLエージェントとBlack-Litterman (BL)モデルを組み合わせたハイブリッドポートフォリオ最適化モデルを提案する。
我々のDRLエージェントは、様々な比較ポートフォリオ選択戦略と代替DRLフレームワークを、累積リターンで少なくとも42%上回っている。
論文 参考訳(メタデータ) (2024-02-23T16:01:37Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
オンラインで適応的な環境で株価予測を行うファクターモデルを構築することは、依然としてオープンな疑問である。
本稿では,オンラインおよび適応型要素モデルであるHireVAEを,市場状況とストックワイド潜在要因の関係を埋め込んだ階層型潜在空間として提案する。
4つの一般的な実市場ベンチマークにおいて、提案されたHireVAEは、以前の手法よりもアクティブリターンの点で優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-06-05T12:58:13Z) - E2EAI: End-to-End Deep Learning Framework for Active Investing [123.52358449455231]
本稿では, ファクタ選択, ファクタ組み合わせ, 株式選択, ポートフォリオ構築を通じて, ファクター投資のほぼ全過程をカバーするE2Eを提案する。
実際の株式市場データの実験は、アクティブ投資におけるエンドツーエンドのディープ・リーン・フレームワークの有効性を示している。
論文 参考訳(メタデータ) (2023-05-25T10:27:07Z) - Asset Allocation: From Markowitz to Deep Reinforcement Learning [2.0305676256390934]
資産配分とは、ポートフォリオの資産を常に再分配することでリスクと報酬のバランスをとることを目的とした投資戦略である。
我々は、多くの最適化手法の有効性と信頼性を決定するために、広範囲なベンチマーク研究を行う。
論文 参考訳(メタデータ) (2022-07-14T14:44:04Z) - Deep Reinforcement Learning for Long-Short Portfolio Optimization [7.131902599861306]
本稿では,実際の取引ルールに適合する短売制のポートフォリオ管理フレームワークであるDeep Reinforcement Learning (DRL)を構築した。
鍵となるイノベーションは、長期にわたるトランザクションの動的進化を考慮に入れた、継続的取引における包括的な短期販売メカニズムの開発である。
従来のアプローチと比較して、このモデルはリスク調整されたリターンを向上し、最大損失を低減します。
論文 参考訳(メタデータ) (2020-12-26T16:25:20Z) - Learning Risk Preferences from Investment Portfolios Using Inverse
Optimization [25.19470942583387]
本稿では,既存ポートフォリオからのリスク嗜好を逆最適化を用いて測定する手法を提案する。
我々は、20年間の資産価格と10年間の相互ファンドポートフォリオ保有からなる実市場データについて、本手法を実証する。
論文 参考訳(メタデータ) (2020-10-04T21:29:29Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
ポートフォリオマネジメント(PM)は、最大利益や最小リスクといった投資目標を達成することを目的としている。
本稿では,PMのための新しいステート拡張RLフレームワークであるSARLを提案する。
当社の枠組みは, 金融PMにおける2つのユニークな課題に対処することを目的としている。(1) データの異種データ -- 資産毎の収集情報は通常, 多様性, ノイズ, 不均衡(ニュース記事など), (2) 環境の不確実性 -- 金融市場は多様で非定常である。
論文 参考訳(メタデータ) (2020-02-09T08:10:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。