Topological interfaces crossed by defects and textures of continuous and
discrete point group symmetries in spin-2 Bose-Einstein condensates
- URL: http://arxiv.org/abs/2309.17394v1
- Date: Fri, 29 Sep 2023 16:56:41 GMT
- Title: Topological interfaces crossed by defects and textures of continuous and
discrete point group symmetries in spin-2 Bose-Einstein condensates
- Authors: Giuseppe Baio, Matthew T. Wheeler, David S. Hall, Janne Ruostekoski,
Magnus O. Borgh
- Abstract summary: We analytically construct a set of spinor wave functions representing defects and textures in a spin-2 Bose-Einstein condensate.
By numerical simulations, we characterize the emergence of non-trivial defect core structures.
Our results demonstrate the potential of spin-2 Bose-Einstein condensates as experimentally accessible platforms for exploring interface physics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We systematically and analytically construct a set of spinor wave functions
representing defects and textures that continuously penetrate interfaces
between coexisting, topologically distinct magnetic phases in a spin-2
Bose-Einstein condensate. These include singular and nonsingular vortices
carrying mass or spin circulation that connect across interfaces between
biaxial- and uniaxial nematic, cyclic and ferromagnetic phases, as well as
vortices terminating as monopoles on the interface ("boojums"). The
biaxial-nematic and cyclic phases exhibit discrete polytope symmetries
featuring non-Abelian vortices and we investigate a pair of non-commuting line
defects within the context of a topological interface. By numerical
simulations, we characterize the emergence of non-trivial defect core
structures, including the formation of composite defects. Our results
demonstrate the potential of spin-2 Bose-Einstein condensates as experimentally
accessible platforms for exploring interface physics, offering a wealth of
combinations of continuous and discrete symmetries.
Related papers
- Measurement-induced entanglement transition in chaotic quantum Ising chain [42.87502453001109]
We study perturbations that break the integrability and/or the symmetry of the model, as well as modifications in the measurement protocol, characterizing the resulting chaos and lack of integrability through the Dissipative Spectral Form Factor (DSFF)
We show that while the measurement-induced phase transition and its properties appear broadly insensitive to lack of integrability and breaking of the $bbZ$ symmetry, a modification of the measurement basis from the transverse to the longitudinal direction makes the phase transition disappear altogether.
arXiv Detail & Related papers (2024-07-11T17:39:29Z) - Shaping the topology of twisted bilayer graphene via time-reversal symmetry breaking [0.0]
We utilize time-reversal symmetry breaking to manipulate the topological properties of twisted bilayer graphene (TBG)
By varying the strength of TRSB, we discover a topological phase transition between a topological insulating phase, which exhibits a pair of flat bands with opposite Chern numbers.
We show that this novel electronic phase can be identified in the lab by measuring, as a function of the Fermi energy, its non-quantized anomalous Hall conductivity.
arXiv Detail & Related papers (2024-06-05T05:14:28Z) - Domain formation and universally critical dynamics through phase
separation in two-component Bose-Einstein condensates [5.699862689734732]
We focus on the non-equilibrium universal dynamics of the miscible-immiscible phase transition with both linear and nonlinear quenching types.
By analyzing the Bogoliubov excitations, we establish a power-law relationship between the domain correlation length, the phase transition delay, and the quench time.
Through real-time simulations of phase transition dynamics, the formation of domain defects and the delay of phase transition in non-equilibrium dynamics are demonstrated.
arXiv Detail & Related papers (2023-11-14T07:25:47Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Observation of a symmetry-protected topological phase in external
magnetic fields [1.4515101661933258]
We report the real-space observation of a symmetry-protected topological phase with interacting nuclear spins.
We probe the interaction-induced transition between two topologically distinct phases, both of which are classified by many-body Chern numbers.
Our findings enable direct characterization of topological features of quantum many-body states through gradually decreasing the strength of the introduced external fields.
arXiv Detail & Related papers (2022-08-10T14:08:01Z) - Anomalous criticality with bounded fluctuations and long-range
frustration induced by broken time-reversal symmetry [0.0]
We consider a one-dimensional Dicke lattice with complex photon hopping amplitudes.
We investigate the influence of time-reversal symmetry breaking due to synthetic magnetic fields.
arXiv Detail & Related papers (2022-08-03T18:00:04Z) - Topological Superfluid Defects with Discrete Point Group Symmetries [0.0]
We verify exotic magnetic phases of atomic spinor Bose-Einstein condensates that exhibit complex discrete polytope symmetries in their topological defects.
We show how filling the vortex line singularities with atoms in a variety of different phases leads to core structures that possess magnetic interfaces with rich combinations of discrete and continuous symmetries.
arXiv Detail & Related papers (2022-03-15T18:32:23Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.