論文の概要: Efficient Streaming Language Models with Attention Sinks
- arxiv url: http://arxiv.org/abs/2309.17453v4
- Date: Sun, 7 Apr 2024 00:56:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 04:28:07.335293
- Title: Efficient Streaming Language Models with Attention Sinks
- Title(参考訳): 注意シンク付き効率的なストリーミング言語モデル
- Authors: Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, Mike Lewis,
- Abstract要約: StreamingLLMは、大規模言語モデルが微調整なしで無限のシーケンス長に一般化できる効率的なフレームワークである。
StreamingLLMはLlama-2, MPT, Falcon, Pythiaを最大400万のトークンで安定かつ効率的な言語モデリングを実現できることを示す。
- 参考スコア(独自算出の注目度): 72.20260088848987
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deploying Large Language Models (LLMs) in streaming applications such as multi-round dialogue, where long interactions are expected, is urgently needed but poses two major challenges. Firstly, during the decoding stage, caching previous tokens' Key and Value states (KV) consumes extensive memory. Secondly, popular LLMs cannot generalize to longer texts than the training sequence length. Window attention, where only the most recent KVs are cached, is a natural approach -- but we show that it fails when the text length surpasses the cache size. We observe an interesting phenomenon, namely attention sink, that keeping the KV of initial tokens will largely recover the performance of window attention. In this paper, we first demonstrate that the emergence of attention sink is due to the strong attention scores towards initial tokens as a "sink" even if they are not semantically important. Based on the above analysis, we introduce StreamingLLM, an efficient framework that enables LLMs trained with a finite length attention window to generalize to infinite sequence lengths without any fine-tuning. We show that StreamingLLM can enable Llama-2, MPT, Falcon, and Pythia to perform stable and efficient language modeling with up to 4 million tokens and more. In addition, we discover that adding a placeholder token as a dedicated attention sink during pre-training can further improve streaming deployment. In streaming settings, StreamingLLM outperforms the sliding window recomputation baseline by up to 22.2x speedup. Code and datasets are provided at https://github.com/mit-han-lab/streaming-llm.
- Abstract(参考訳): 長時間の対話が期待されるマルチラウンド対話のようなストリーミングアプリケーションに大規模言語モデル(LLM)をデプロイすることは、緊急に必要だが、2つの大きな課題を提起する。
まず、デコーディングの段階では、以前のトークンのキーとバリューステート(KV)をキャッシュすることで、広範なメモリを消費する。
第二に、人気のあるLLMはトレーニングシーケンス長よりも長いテキストに一般化できない。
最新のKVだけがキャッシュされるウィンドウアテンションは自然なアプローチだが、テキスト長がキャッシュサイズを超えると失敗することを示している。
我々は、初期トークンのKVを維持することで、窓の注意を回復する興味深い現象、すなわち注意シンクを観察する。
本稿では,最初に注意シンクの出現は,意味的に重要でない場合でも,初期トークンを「シンク」として注目するスコアが強いことに起因することを実証する。
以上の分析に基づいて,有限長注意ウィンドウで学習したLLMを微調整なしで無限列長に一般化する,効率的なフレームワークであるStreamingLLMを導入する。
StreamingLLMはLlama-2, MPT, Falcon, Pythiaを最大400万のトークンで安定かつ効率的な言語モデリングを実現できることを示す。
さらに,事前トレーニング中に専用の注意シンクとしてプレースホルダトークンを追加することで,ストリーミングデプロイメントをさらに改善できることが判明した。
ストリーミング設定では、StreamingLLMは最大22.2倍のスピードアップでスライディングウィンドウ再計算ベースラインを上回っている。
コードとデータセットはhttps://github.com/mit-han-lab/streaming-llm.comで提供されている。
関連論文リスト
- LServe: Efficient Long-sequence LLM Serving with Unified Sparse Attention [26.54297116028556]
LServeは長周期言語モデルを高速化する効率的なシステムである。
ハードウェアフレンドリーで構造化されたスペーシングパターンを統一し、プリフィルとデコードの両方の注意を喚起する。
LServeはLLMプリフィルを最大2.9倍加速し、vLLMで1.3-2.1倍デコードする。
論文 参考訳(メタデータ) (2025-02-20T18:59:52Z) - InfiniteHiP: Extending Language Model Context Up to 3 Million Tokens on a Single GPU [48.105361428245736]
大規模言語モデル(LLM)の推論フレームワークであるInfiniteHiPを紹介する。
モジュール型階層型トークンプルーニングアルゴリズムにより,無関係なコンテキストトークンを動的に除去する。
我々のフレームワークは、追加のトレーニングを必要とせず、100万のトークンコンテキストに対して18.95倍のアテンションデコーディングを実現する。
論文 参考訳(メタデータ) (2025-02-13T02:52:01Z) - AttentionPredictor: Temporal Pattern Matters for Efficient LLM Inference [51.1972443343829]
本稿では,最初の学習に基づくクリティカルトークン識別手法であるAttentionPredictorを提案する。
注意予測器は、無視可能なメモリを消費しながら、注意スコアを正確に予測する。
また、トークン時間オーバーヘッドを隠蔽してデコードステージを高速化する、クロストークンクリティカルキャッシュプリフェッチフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-06T13:41:46Z) - Compressing KV Cache for Long-Context LLM Inference with Inter-Layer Attention Similarity [24.118503938098307]
選択トークン保持やウィンドウベースアテンションを含む既存の手法では、効率は向上するが、将来のテキスト生成に必要な重要なトークンを破棄するリスクがある。
トークンを破棄するのではなく、重要でないトークンのメモリと計算負荷を削減し、トークンロスを伴わずにLCM効率を向上させるアプローチを提案する。
論文 参考訳(メタデータ) (2024-12-03T08:29:27Z) - Recycled Attention: Efficient inference for long-context language models [54.00118604124301]
本稿では,入力トークンのサブセットに対して,フルコンテキストアテンションとアテンションを交互に切り替える推論時間手法であるRecycled Attentionを提案する。
部分的に注意を払っていると、全注意を払っている前のトークンの注意パターンをリサイクルし、最も出席しているトークンの上位Kにのみ出席する。
提案手法は,局所的な文脈や注目スコアの高いトークンにのみ参加する推論時加速度法と比較して,現在の復号ステップに関連するトークンを柔軟に選択する。
論文 参考訳(メタデータ) (2024-11-08T18:57:07Z) - Training-Free Exponential Context Extension via Cascading KV Cache [49.608367376911694]
カスケードサブキャッシュバッファを利用して,最も関連性の高いトークンを選択的に保持する機構を導入する。
本手法は,1Mトークンのフラッシュアテンションと比較して,プリフィルステージ遅延を6.8倍削減する。
論文 参考訳(メタデータ) (2024-06-24T03:59:17Z) - A Training-free Sub-quadratic Cost Transformer Model Serving Framework With Hierarchically Pruned Attention [43.211427581302715]
大規模言語モデルにおける文脈長を増大させるため,HiP(Hierarchically Pruned Attention)を提案する。
HiPは注意機構の時間的複雑さを$O(T log T)$に減らし、空間的複雑さを$O(T)$に減らし、$T$はシーケンス長である。
HiPは, 劣化を最小限に抑えつつ, プリフィルとデコードの両方のレイテンシとメモリ使用率を著しく低減することを示す。
論文 参考訳(メタデータ) (2024-06-14T08:32:45Z) - An Image is Worth 1/2 Tokens After Layer 2: Plug-and-Play Inference Acceleration for Large Vision-Language Models [65.37846460916042]
視覚的トークンに対する注意計算は,LVLMの深い層において極めて非効率であることがわかった。
本稿では,計算効率の最適化を目的とした多用途プラグアンドプレイ方式であるFastVを紹介する。
論文 参考訳(メタデータ) (2024-03-11T14:35:32Z) - LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models [83.98062659664785]
大規模言語モデル(LLM)は通常、トランスフォーマーアーキテクチャの2次複雑さのために短いテキストセグメント(例:4Kトークン)でトレーニングする。
この研究は、この長大一般化失敗に寄与する3つの主要な要因を特定する。
本研究では,LLMの長期処理能力を高めるための簡易かつ効果的な手法であるLM-Infiniteを提案する。
論文 参考訳(メタデータ) (2023-08-30T16:47:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。