論文の概要: A Training-free Sub-quadratic Cost Transformer Model Serving Framework With Hierarchically Pruned Attention
- arxiv url: http://arxiv.org/abs/2406.09827v2
- Date: Tue, 15 Oct 2024 06:09:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 13:59:52.595956
- Title: A Training-free Sub-quadratic Cost Transformer Model Serving Framework With Hierarchically Pruned Attention
- Title(参考訳): 階層的に計画された注意を伴う訓練不要なサブクワッドラティックコストトランスモデルサービングフレームワーク
- Authors: Heejun Lee, Geon Park, Youngwan Lee, Jaduk Suh, Jina Kim, Wonyoung Jeong, Bumsik Kim, Hyemin Lee, Myeongjae Jeon, Sung Ju Hwang,
- Abstract要約: 大規模言語モデルにおける文脈長を増大させるため,HiP(Hierarchically Pruned Attention)を提案する。
HiPは注意機構の時間的複雑さを$O(T log T)$に減らし、空間的複雑さを$O(T)$に減らし、$T$はシーケンス長である。
HiPは, 劣化を最小限に抑えつつ, プリフィルとデコードの両方のレイテンシとメモリ使用率を著しく低減することを示す。
- 参考スコア(独自算出の注目度): 43.211427581302715
- License:
- Abstract: In modern large language models (LLMs), increasing the context length is crucial for improving comprehension and coherence in long-context, multi-modal, and retrieval-augmented language generation. While many recent transformer models attempt to extend their context length over a million tokens, they remain impractical due to the quadratic time and space complexities. Although recent works on linear and sparse attention mechanisms can achieve this goal, their real-world applicability is often limited by the need to re-train from scratch and significantly worse performance. In response, we propose a novel approach, Hierarchically Pruned Attention (HiP), which reduces the time complexity of the attention mechanism to $O(T \log T)$ and the space complexity to $O(T)$, where $T$ is the sequence length. We notice a pattern in the attention scores of pretrained LLMs where tokens close together tend to have similar scores, which we call ``attention locality''. Based on this observation, we utilize a novel tree-search-like algorithm that estimates the top-$k$ key tokens for a given query on the fly, which is mathematically guaranteed to have better performance than random attention pruning. In addition to improving the time complexity of the attention mechanism, we further optimize GPU memory usage by implementing KV cache offloading, which stores only $O(\log T)$ tokens on the GPU while maintaining similar decoding throughput. Experiments on benchmarks show that HiP, with its training-free nature, significantly reduces both prefill and decoding latencies, as well as memory usage, while maintaining high-quality generation with minimal degradation. HiP enables pretrained LLMs to scale up to millions of tokens on commodity GPUs, potentially unlocking long-context LLM applications previously deemed infeasible.
- Abstract(参考訳): 現代大規模言語モデル(LLM)では、コンテキスト長の増大は、長いコンテキスト、マルチモーダル、検索強化言語生成における理解とコヒーレンスの向上に不可欠である。
近年の変圧器モデルは100万以上のトークンに文脈長を拡張しようとするが、二次時間と空間の複雑さのため実用的ではない。
近年の線形かつ疎度な注意機構の研究はこの目標を達成することができるが、実世界の適用性は、スクラッチから再トレーニングする必要があることや、性能が著しく悪いことなどによって制限されることが多い。
提案手法では,注意機構の時間的複雑さを$O(T \log T)$,空間的複雑性を$O(T)$,$T$をシーケンス長とする。
トークンが近接するLLMの注意点のパターンは,'アテンション・ローカリティ''と呼ばれる類似のスコアを持つ傾向にある。
そこで本研究では,木探索のような新しいアルゴリズムを用いて,与えられたクエリのキートークンのトップ$kを推定し,ランダムなアテンションプルーニングよりも高い性能を保証している。
注意機構の時間的複雑さの改善に加えて、類似の復号スループットを維持しつつ、GPUに$O(\log T)$トークンのみを格納するKVキャッシュオフロードを実装することにより、GPUメモリ使用量をさらに最適化する。
ベンチマークの実験によると、HiPはトレーニング不要な性質で、最小限の劣化で高品質な生成を維持しながら、プリフィルとデコードレイテンシとメモリ使用率の両方を著しく削減する。
HiPにより、トレーニング済みのLLMは、コモディティGPU上で数百万のトークンをスケールすることができる。
関連論文リスト
- HSR-Enhanced Sparse Attention Acceleration [19.776342074253435]
本稿では,Large Language Models (LLM) における注意計算を高速化する新しい手法を提案する。
我々は,従来のSoftmaxアテンションとReLUアテンションの両方において,アテンションメカニズム内の固有空間を利用する。
提案手法では,ReLUの注意には誤りがなく,Softmaxの注意には誤りがない。
論文 参考訳(メタデータ) (2024-10-14T05:18:02Z) - Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers [58.5711048151424]
SPARSEK Attention(SPARSEK Attention)は、計算およびメモリ障害を克服するために設計された、新しいスパースアテンション機構である。
提案手法では,各クエリに対して一定数のKVペアを選択するために,スコアリングネットワークと差別化可能なトップkマスク演算子であるSPARSEKを統合する。
実験結果から,SPARSEK注意は従来のスパースアテンション法よりも優れていた。
論文 参考訳(メタデータ) (2024-06-24T15:55:59Z) - Training-Free Exponential Context Extension via Cascading KV Cache [49.608367376911694]
カスケードサブキャッシュバッファを利用して,最も関連性の高いトークンを選択的に保持する機構を導入する。
本手法は,1Mトークンのフラッシュアテンションと比較して,プリフィルステージ遅延を6.8倍削減する。
論文 参考訳(メタデータ) (2024-06-24T03:59:17Z) - Hardware-Aware Parallel Prompt Decoding for Memory-Efficient Acceleration of LLM Inference [19.167604927651073]
LLM(Large Language Models)の自動回帰デコーディングは、ハードウェアの性能に大きなオーバーヘッドをもたらす。
トレーニング可能なパラメータを0.0002$%しか必要とせず,A100-40GBのGPUをたった16時間で効率的にトレーニングできる並列プロンプトデコーディングを提案する。
我々のアプローチでは、最大2.49$times$ スピードアップを示し、最小のメモリオーバーヘッドは0.0004$%である。
論文 参考訳(メタデータ) (2024-05-28T22:19:30Z) - Hierarchical Context Merging: Better Long Context Understanding for Pre-trained LLMs [61.40047491337793]
本稿では,大規模言語モデルの制約を克服する新しいトレーニングフリースキームである階層型cOntext MERging(HOMER)を提案する。
HomeRは、長いインプットを管理可能なチャンクに分割する、分別/対数アルゴリズムを使用する。
トークン削減技術がマージ毎に先行し、メモリ使用効率が保証される。
論文 参考訳(メタデータ) (2024-04-16T06:34:08Z) - Fast Multipole Attention: A Divide-and-Conquer Attention Mechanism for Long Sequences [1.5484595752241124]
我々は、長さ$n$のシーケンスに対する注意の時間とメモリの複雑さを低減するために、分割・参照戦略を利用する新しい注意機構であるFast Multipole Attentionを提案する。
階層的なアプローチは、クエリ、キー、値を$mathcalO(log n)$の解像度レベルにグループ化する。
我々は,高速多極変換器がメモリサイズや精度の点で,他の効率的な変換器よりもはるかに優れていることを実証的に見出した。
論文 参考訳(メタデータ) (2023-10-18T13:40:41Z) - Efficient Streaming Language Models with Attention Sinks [72.20260088848987]
StreamingLLMは、大規模言語モデルが微調整なしで無限のシーケンス長に一般化できる効率的なフレームワークである。
StreamingLLMはLlama-2, MPT, Falcon, Pythiaを最大400万のトークンで安定かつ効率的な言語モデリングを実現できることを示す。
論文 参考訳(メタデータ) (2023-09-29T17:59:56Z) - H$_2$O: Heavy-Hitter Oracle for Efficient Generative Inference of Large
Language Models [110.06476624089679]
メモリフットプリントを大幅に削減する新しいKVキャッシュの実装手法を提案する。
我々のアプローチは、トークンのごく一部が、注意点の計算において、ほとんどの価値に寄与する、という観察に基づいている。
我々は,最近のトークンとH$のバランスを動的に保持するKVキャッシュ消去ポリシーであるヘビーヒッター(H$O)を提案する。
論文 参考訳(メタデータ) (2023-06-24T20:11:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。