論文の概要: A Prefrontal Cortex-inspired Architecture for Planning in Large Language
Models
- arxiv url: http://arxiv.org/abs/2310.00194v3
- Date: Wed, 6 Mar 2024 03:24:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-07 11:56:05.027513
- Title: A Prefrontal Cortex-inspired Architecture for Planning in Large Language
Models
- Title(参考訳): 大規模言語モデル構築のための前頭前皮質刺激型アーキテクチャ
- Authors: Taylor Webb, Shanka Subhra Mondal, Chi Wang, Brian Krabach, Ida
Momennejad
- Abstract要約: 大規模言語モデル(LLM)は、多段階の推論や目標指向の計画を必要とするタスクに悩まされることが多い。
我々はヒト脳からインスピレーションを受け、前頭前皮質(PFC)の特殊モジュールの反復的相互作用によって計画が達成される。
- 参考スコア(独自算出の注目度): 16.475564538598768
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) demonstrate impressive performance on a wide
variety of tasks, but they often struggle with tasks that require multi-step
reasoning or goal-directed planning. To address this, we take inspiration from
the human brain, in which planning is accomplished via the recurrent
interaction of specialized modules in the prefrontal cortex (PFC). These
modules perform functions such as conflict monitoring, state prediction, state
evaluation, task decomposition, and task coordination. We find that LLMs are
sometimes capable of carrying out these functions in isolation, but struggle to
autonomously coordinate them in the service of a goal. Therefore, we propose a
black box architecture with multiple LLM-based (GPT-4) modules. The
architecture improves planning through the interaction of specialized
PFC-inspired modules that break down a larger problem into multiple brief
automated calls to the LLM. We evaluate the combined architecture on three
challenging planning tasks -- graph traversal, Tower of Hanoi, and logistics --
finding that it yields significant improvements over standard LLM methods
(e.g., zero-shot prompting, in-context learning, and chain-of-thought). These
results demonstrate the benefit of utilizing knowledge from cognitive
neuroscience to improve planning in LLMs.
- Abstract(参考訳): 大きな言語モデル(LLM)は、様々なタスクにおいて印象的なパフォーマンスを示すが、多段階の推論や目標指向の計画を必要とするタスクにしばしば苦労する。
そこで我々は,前頭前皮質(PFC)の特別なモジュールの反復的相互作用によって計画が達成される,人間の脳からインスピレーションを得た。
これらのモジュールは競合監視、状態予測、状態評価、タスク分解、タスク調整などの機能を実行する。
LLMは、これらの機能を単独で行うことができる場合もあるが、目標を達成するために自律的に協調するのは難しい。
そこで本研究では,複数のLCM(GPT-4)モジュールを用いたブラックボックスアーキテクチャを提案する。
このアーキテクチャは、特定のPFCにインスパイアされたモジュールの相互作用によって計画を改善し、より大きな問題をLLMへの複数の短時間の自動呼び出しに分解する。
グラフトラバーサル,ハノイ塔,ロジスティクスの3つの挑戦的計画課題におけるアーキテクチャの組み合わせを評価し,標準LLM法(ゼロショットプロンプト,コンテキスト内学習,チェーン・オブ・シントなど)よりも大幅に改善されていることを確認した。
これらの結果は,認知神経科学の知識を活用し,llmの計画を改善することの利点を示す。
関連論文リスト
- Embodied AI in Mobile Robots: Coverage Path Planning with Large Language Models [6.860460230412773]
移動体エージェントのためのLLM方式の経路計画フレームワークを提案する。
提案する多層アーキテクチャは,経路計画段階におけるLPMを用いて,移動エージェントの低レベルアクチュエータと統合する。
本実験により,LLMの2次元平面推論能力と完全カバレッジパス計画タスクを改善することができることが示された。
論文 参考訳(メタデータ) (2024-07-02T12:38:46Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
知識グラフ(KG)から得られた計画データを用いて,大規模言語モデル(LLM)計画能力を向上するための新しいフレームワークを提案する。
KGデータで微調整されたLLMは、計画能力を向上し、検索を含む複雑なQAタスクを処理するのがより適している。
論文 参考訳(メタデータ) (2024-06-20T13:07:38Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
大規模言語モデル (LLM) は、物理世界の意思決定問題を解くことができる。
このモデルの下で、LLM Plannerは、プロンプトを介して言語ベースのサブゴールを反復的に生成することにより、部分的に観測可能なマルコフ決定プロセス(POMDP)をナビゲートする。
我々は,事前学習したLLMプランナーが,文脈内学習を通じてベイズ的集計模倣学習(BAIL)を効果的に行うことを証明した。
論文 参考訳(メタデータ) (2024-05-30T09:42:54Z) - A Human-Like Reasoning Framework for Multi-Phases Planning Task with Large Language Models [15.874604623294427]
マルチパス計画問題には、アウトライン、情報収集、計画といった複数の相互接続ステージが含まれる。
既存の推論アプローチは、この複雑なタスクを効果的に解決するのに苦労しています。
本研究は,LLMエージェントのためのヒューマンライクな計画フレームワークを開発することで,この問題に対処することを目的としている。
論文 参考訳(メタデータ) (2024-05-28T14:13:32Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - Sub-goal Distillation: A Method to Improve Small Language Agents [21.815417165548187]
大規模言語モデル(LLM)は対話型タスクにおけるエージェントとして大きな可能性を証明している。
数十億のパラメータを持つLLMの性能を、はるかに小さな言語モデルに転送する手法を提案する。
困難かつマルチタスクな対話型テキスト環境であるScienceWorldでは,基本動作のみに基づく標準的な模倣学習を16.7%超えている。
論文 参考訳(メタデータ) (2024-05-04T20:34:06Z) - LLM3:Large Language Model-based Task and Motion Planning with Motion Failure Reasoning [78.2390460278551]
従来のタスク・アンド・モーション・プランニング(TAMP)アプローチは、シンボル的タスク・プランニングと連続的なモーション・ジェネレーションを結びつける手作業によるインタフェースに依存している。
本稿では,ドメインに依存しないインターフェースを備えたLarge Language Model (LLM) ベースの TAMP フレームワーク LLM3 を提案する。
具体的には、事前学習したLLMの強力な推論と計画能力を活用して、シンボル的なアクションシーケンスを提案し、動作計画のための連続的なアクションパラメータを選択する。
論文 参考訳(メタデータ) (2024-03-18T08:03:47Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
大規模言語モデル(LLM)エージェントはスタンドアロンのLLMの機能を大幅に拡張する。
本稿では、上記の機能をプランナー、呼び出し元、要約器に分解する新しい手法を提案する。
このモジュール化されたフレームワークは、個々の更新と、それぞれの機能を構築するための小さなLLMの潜在的な使用を容易にする。
論文 参考訳(メタデータ) (2024-01-14T16:17:07Z) - Dynamic Planning with a LLM [15.430182858130884]
大言語モデル(LLM)はゼロショット設定で多くのNLPタスクを解くことができるが、具体化エージェントを含むアプリケーションは依然として問題である。
LLM動的プランナー(LLM-DP)は,LLMが従来のプランナーと手動で作業し,具体的課題を解決する,神経象徴的な枠組みである。
論文 参考訳(メタデータ) (2023-08-11T21:17:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。