論文の概要: Planning with Multi-Constraints via Collaborative Language Agents
- arxiv url: http://arxiv.org/abs/2405.16510v4
- Date: Mon, 16 Dec 2024 02:27:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:53:20.506480
- Title: Planning with Multi-Constraints via Collaborative Language Agents
- Title(参考訳): 協調型言語エージェントによる複数制約による計画
- Authors: Cong Zhang, Derrick Goh Xin Deik, Dexun Li, Hao Zhang, Yong Liu,
- Abstract要約: 本稿では,協調型マルチエージェントシステムのためのゼロショット手法であるPMC(Planning with Multi-Constraints)を紹介する。
PMCは、制約で複雑なタスク計画を簡単にし、従属タスクの階層に分解する。
PMCはTravelPlannerで平均42.68%の成功率を記録し、GPT-4 (2.92%) をはるかに上回り、API-BankでReActを13.64%上回った。
- 参考スコア(独自算出の注目度): 13.550774629515843
- License:
- Abstract: The rapid advancement of neural language models has sparked a new surge of intelligent agent research. Unlike traditional agents, large language model-based agents (LLM agents) have emerged as a promising paradigm for achieving artificial general intelligence (AGI) due to their superior reasoning and generalization capabilities. Effective planning is crucial for the success of LLM agents in real-world tasks, making it a highly pursued topic in the community. Current planning methods typically translate tasks into executable action sequences. However, determining a feasible or optimal sequence for complex tasks with multiple constraints at fine granularity, which often requires compositing long chains of heterogeneous actions, remains challenging. This paper introduces Planning with Multi-Constraints (PMC), a zero-shot methodology for collaborative LLM-based multi-agent systems that simplifies complex task planning with constraints by decomposing it into a hierarchy of subordinate tasks. Each subtask is then mapped into executable actions. PMC was assessed on two constraint-intensive benchmarks, TravelPlanner and API-Bank. Notably, PMC achieved an average 42.68% success rate on TravelPlanner, significantly higher than GPT-4 (2.92%), and outperforming GPT-4 with ReAct on API-Bank by 13.64%, showing the immense potential of integrating LLM with multi-agent systems. We also show that PMC works with small LLM as the planning core, e.g., LLaMA-3.1-8B.
- Abstract(参考訳): ニューラルネットワークモデルの急速な進歩は、インテリジェントエージェント研究の新たな飛躍を引き起こした。
従来のエージェントとは異なり、大規模言語モデルベースエージェント(LLMエージェント)は、より優れた推論と一般化能力のために、人工知能(AGI)を実現するための有望なパラダイムとして登場した。
LLMエージェントが現実のタスクで成功するためには,効果的な計画が不可欠である。
現在の計画手法は、通常タスクを実行可能なアクションシーケンスに変換する。
しかし、細粒度で複数の制約を課す複雑なタスクに対して可能な、あるいは最適な順序を決定するには、しばしば不均一なアクションの長い連鎖を合成する必要があるが、依然として困難である。
本稿では,LLMに基づく協調型マルチエージェントシステムのためのゼロショット手法であるPlanning with Multi-Constraints (PMC)を紹介する。
各サブタスクは実行可能アクションにマッピングされる。
PMCは、TravelPlannerとAPI-Bankの2つの制約集約ベンチマークで評価された。
特に、PMCはTravelPlannerで平均42.68%の成功率を記録し、GPT-4 (2.92%) をはるかに上回り、API-BankでReActを13.64%上回った。
また, PMC は, LLaMA-3.1-8B などの計画コアとして小型 LLM で動作することを示す。
関連論文リスト
- MALT: Improving Reasoning with Multi-Agent LLM Training [64.13803241218886]
推論問題に対するマルチエージェントLLMトレーニング(MALT)に向けた第一歩を提示する。
提案手法では,ヘテロジニアスLSMが割り当てられた逐次的マルチエージェント構成を用いる。
我々は,MATH,GSM8k,CQAにまたがるアプローチを評価し,MALT on Llama 3.1 8Bモデルでそれぞれ14.14%,7.12%,9.40%の相対的な改善を実現した。
論文 参考訳(メタデータ) (2024-12-02T19:30:36Z) - Cooperative Strategic Planning Enhances Reasoning Capabilities in Large Language Models [37.899581994741865]
本稿では,新しい協調型マルチエージェント推論フレームワーク(CoPlanner)を提案する。
コプラナーは2つのLSMエージェント(計画エージェントと推論エージェント)から構成される。
以上の結果から,計画エージェントからの指導とエージェント間の効果的な協力が,CoPlannerの優れた性能に寄与することが示唆された。
論文 参考訳(メタデータ) (2024-10-25T23:32:48Z) - LaMMA-P: Generalizable Multi-Agent Long-Horizon Task Allocation and Planning with LM-Driven PDDL Planner [9.044939946653002]
言語モデル(LM)は、自然言語を理解する強力な能力を有しており、人間の指示を単純なロボットタスクの詳細な計画に変換するのに効果的である。
本稿では,言語モデル駆動型多エージェントPDDLプランナ(LaMMA-P)を提案する。
LaMMA-Pは、LMの推論能力と従来の探索プランナーの強みを統合し、高い成功率と効率を達成する。
論文 参考訳(メタデータ) (2024-09-30T17:58:18Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示す。
現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
論文 参考訳(メタデータ) (2024-03-29T03:48:12Z) - KnowAgent: Knowledge-Augmented Planning for LLM-Based Agents [52.348929737851165]
大規模言語モデル(LLM)は複雑な推論タスクにおいて大きな可能性を証明していますが、より高度な課題に取り組むには不十分です。
この不適切さは、主に言語エージェントのアクション知識が組み込まれていないことに起因する。
我々は、明示的な行動知識を取り入れることで、LLMの計画能力を高めるために設計された新しいアプローチであるKnowAgentを紹介する。
論文 参考訳(メタデータ) (2024-03-05T16:39:12Z) - ADaPT: As-Needed Decomposition and Planning with Language Models [131.063805299796]
As-Needed Decomposition and Planning for Complex Tasks (ADaPT)について紹介する。
ADaPTは、Large Language Modelsがそれらを実行できない場合、複雑なサブタスクを明示的に計画し、分解する。
以上の結果から,ADaPTは強いベースラインを確立した。
論文 参考訳(メタデータ) (2023-11-08T17:59:15Z) - Branch-Solve-Merge Improves Large Language Model Evaluation and Generation [136.7876524839751]
大規模言語モデル(LLM)は多面的言語生成や評価タスクに頻繁に使用される。
本稿では,これらの課題に対処するための大規模言語モデルプログラムであるブランチ・マージ(BSM)を提案する。
BSMは、人間とLLMの合意を最大26%向上させることにより、各LLMの評価正当性と整合性を向上させる。
論文 参考訳(メタデータ) (2023-10-23T17:29:48Z) - Improving Planning with Large Language Models: A Modular Agentic Architecture [7.63815864256878]
大規模言語モデル(LLM)は、多段階の推論や目標指向の計画を必要とするタスクに悩まされることが多い。
本稿では,特殊モジュールの反復的相互作用によって計画が達成されるエージェントアーキテクチャ,MAPを提案する。
MAPは両方の標準LLM法よりも大幅に改善されていることがわかった。
論文 参考訳(メタデータ) (2023-09-30T00:10:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。