論文の概要: Scalable Resource Management for Dynamic MEC: An Unsupervised
Link-Output Graph Neural Network Approach
- arxiv url: http://arxiv.org/abs/2306.08938v2
- Date: Tue, 20 Jun 2023 00:08:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 00:44:42.936772
- Title: Scalable Resource Management for Dynamic MEC: An Unsupervised
Link-Output Graph Neural Network Approach
- Title(参考訳): 動的MECのためのスケーラブルリソース管理:教師なしリンク出力グラフニューラルネットワークアプローチ
- Authors: Xiucheng Wang and Nan Cheng and Lianhao Fu and Wei Quan and Ruijin Sun
and Yilong Hui and Tom Luan and Xuemin Shen
- Abstract要約: ディープラーニングは、タスクオフロードとリソース割り当てを最適化するために、モバイルエッジコンピューティング(MEC)でうまく採用されている。
エッジネットワークのダイナミクスは、低スケーラビリティと高トレーニングコストという、ニューラルネットワーク(NN)ベースの最適化方法における2つの課題を提起する。
本稿では,新たなリンクアウトプットGNN(LOGNN)ベースの資源管理手法を提案し,MECにおける資源割り当てを柔軟に最適化する。
- 参考スコア(独自算出の注目度): 36.32772317151467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has been successfully adopted in mobile edge computing (MEC) to
optimize task offloading and resource allocation. However, the dynamics of edge
networks raise two challenges in neural network (NN)-based optimization
methods: low scalability and high training costs. Although conventional
node-output graph neural networks (GNN) can extract features of edge nodes when
the network scales, they fail to handle a new scalability issue whereas the
dimension of the decision space may change as the network scales. To address
the issue, in this paper, a novel link-output GNN (LOGNN)-based resource
management approach is proposed to flexibly optimize the resource allocation in
MEC for an arbitrary number of edge nodes with extremely low algorithm
inference delay. Moreover, a label-free unsupervised method is applied to train
the LOGNN efficiently, where the gradient of edge tasks processing delay with
respect to the LOGNN parameters is derived explicitly. In addition, a
theoretical analysis of the scalability of the node-output GNN and link-output
GNN is performed. Simulation results show that the proposed LOGNN can
efficiently optimize the MEC resource allocation problem in a scalable way,
with an arbitrary number of servers and users. In addition, the proposed
unsupervised training method has better convergence performance and speed than
supervised learning and reinforcement learning-based training methods. The code
is available at \url{https://github.com/UNIC-Lab/LOGNN}.
- Abstract(参考訳): ディープラーニングは、タスクオフロードとリソース割り当てを最適化するために、モバイルエッジコンピューティング(MEC)でうまく採用されている。
しかしながら、エッジネットワークのダイナミクスは、低スケーラビリティと高トレーニングコストという、ニューラルネットワーク(NN)ベースの最適化方法における2つの課題を提起する。
従来のノード出力グラフニューラルネットワーク(GNN)は、ネットワークがスケールするときにエッジノードの特徴を抽出できるが、ネットワークがスケールするにつれて決定空間の次元が変化するのに対して、新しいスケーラビリティの問題に対処できない。
本稿では,アルゴリズムの推論遅延が非常に低い任意のエッジノードに対して,MECにおけるリソース割り当てを柔軟に最適化する,新しいリンク出力GNN(LOGNN)ベースのリソース管理手法を提案する。
さらに、LOGNNパラメータに対するエッジタスク処理遅延の勾配を明示的に導出する、LOGNNを効率的に訓練するためのラベルフリーな教師なし手法を適用した。
また、ノード出力GNNとリンク出力GNNのスケーラビリティに関する理論的解析を行う。
シミュレーションの結果,提案するLOGNNは,任意の数のサーバとユーザを用いて,MECリソース割り当て問題をスケーラブルな方法で効率的に最適化できることがわかった。
さらに,教師なし学習法では教師付き学習法や強化学習に基づく学習法に比べて,収束性能と速度が向上した。
コードは \url{https://github.com/UNIC-Lab/LOGNN} で公開されている。
関連論文リスト
- T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAEはグラフオートエンコーダフレームワークで、GNNの転送性と安定性を活用して、再トレーニングなしに効率的なネットワークアライメントを実現する。
実験の結果、T-GAEは最先端の最適化手法と最高のGNN手法を最大38.7%、50.8%で上回っていることがわかった。
論文 参考訳(メタデータ) (2023-10-05T02:58:29Z) - Learning State-Augmented Policies for Information Routing in
Communication Networks [92.59624401684083]
我々は,グラフニューラルネットワーク(GNN)アーキテクチャを用いて,ソースノードの集約情報を最大化する,新たなステート拡張(SA)戦略を開発した。
教師なし学習手法を利用して、GNNアーキテクチャの出力を最適情報ルーティング戦略に変換する。
実験では,実時間ネットワークトポロジの評価を行い,アルゴリズムの有効性を検証した。
論文 参考訳(メタデータ) (2023-09-30T04:34:25Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - GNN at the Edge: Cost-Efficient Graph Neural Network Processing over
Distributed Edge Servers [24.109721494781592]
グラフニューラルネットワーク(GNN)はまだ探索中であり、その広範な採用に対する大きな違いを示している。
本稿では,多層ヘテロジニアスエッジネットワーク上での分散GNN処理のコスト最適化について検討する。
提案手法は, 高速収束速度で95.8%以上のコスト削減を行い, デファクトベースラインよりも優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2022-10-31T13:03:16Z) - Graph Neural Network Based Node Deployment for Throughput Enhancement [20.56966053013759]
本稿では,ネットワークノード配置問題に対する新しいグラフニューラルネットワーク(GNN)手法を提案する。
提案手法の理論的サポートとして,表現型GNNが関数値とトラフィック置換の両方を近似する能力を持つことを示す。
論文 参考訳(メタデータ) (2022-08-19T08:06:28Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Graph Neural Networks for Scalable Radio Resource Management:
Architecture Design and Theoretical Analysis [31.372548374969387]
本稿では,大規模無線資源管理問題にグラフニューラルネットワーク(GNN)を適用することを提案する。
提案手法はスケーラビリティが高く,1つのGPU上で1,000ドルのトランシーバペアを6ミリ秒以内で行う干渉チャネルにおけるビームフォーミング問題を解くことができる。
論文 参考訳(メタデータ) (2020-07-15T11:43:32Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
本稿では,自由空間光(FSO)フロントホールネットワークにおける最適資源割り当てについて検討する。
我々は、FSOネットワーク構造を利用するために、ポリシーパラメータ化のためのグラフニューラルネットワーク(GNN)を検討する。
本アルゴリズムは,システムモデルに関する知識が不要なモデルフリーでGNNを訓練するために開発された。
論文 参考訳(メタデータ) (2020-06-26T14:20:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。