Mitigating Hallucination in VideoLLMs via Temporal-Aware Activation Engineering
- URL: http://arxiv.org/abs/2505.12826v1
- Date: Mon, 19 May 2025 08:12:06 GMT
- Title: Mitigating Hallucination in VideoLLMs via Temporal-Aware Activation Engineering
- Authors: Jianfeng Cai, Wengang Zhou, Zongmeng Zhang, Jiale Hong, Nianji Zhan, Houqiang Li,
- Abstract summary: hallucination in large language models (MLLMs) persists as a significant and under-addressed challenge in the video domain.<n>We propose a temporal-aware activation engineering framework for VideoLLMs, which adaptively identifies and manipulates hallucination-sensitive modules.
- Score: 83.63437999696954
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multimodal large language models (MLLMs) have achieved remarkable progress in video understanding.However, hallucination, where the model generates plausible yet incorrect outputs, persists as a significant and under-addressed challenge in the video domain. Among existing solutions, activation engineering has proven successful in mitigating hallucinations in LLMs and ImageLLMs, yet its applicability to VideoLLMs remains largely unexplored. In this work, we are the first to systematically investigate the effectiveness and underlying mechanisms of activation engineering for mitigating hallucinations in VideoLLMs. We initially conduct an investigation of the key factors affecting the performance of activation engineering and find that a model's sensitivity to hallucination depends on $\textbf{temporal variation}$ rather than task type. Moreover, selecting appropriate internal modules and dataset for activation engineering is critical for reducing hallucination. Guided by these findings, we propose a temporal-aware activation engineering framework for VideoLLMs, which adaptively identifies and manipulates hallucination-sensitive modules based on the temporal variation characteristic, substantially mitigating hallucinations without additional LLM fine-tuning. Experiments across multiple models and benchmarks demonstrate that our method markedly reduces hallucination in VideoLLMs, thereby validating the robustness of our findings.
Related papers
- MIRAGE: Assessing Hallucination in Multimodal Reasoning Chains of MLLM [58.2298313720146]
Multimodal hallucinations are multi-sourced and arise from diverse causes.<n>Existing benchmarks fail to adequately distinguish between perception-induced hallucinations and reasoning-induced hallucinations.
arXiv Detail & Related papers (2025-05-30T05:54:36Z) - Robust Hallucination Detection in LLMs via Adaptive Token Selection [25.21763722332831]
Hallucinations in large language models (LLMs) pose significant safety concerns that impede their broader deployment.<n>We propose HaMI, a novel approach that enables robust detection of hallucinations through adaptive selection and learning of critical tokens.<n>We achieve this robustness by an innovative formulation of the Hallucination detection task as Multiple Instance (HaMI) learning over token-level representations within a sequence.
arXiv Detail & Related papers (2025-04-10T15:39:10Z) - Combating Multimodal LLM Hallucination via Bottom-Up Holistic Reasoning [151.4060202671114]
multimodal large language models (MLLMs) have shown unprecedented capabilities in advancing vision-language tasks.<n>This paper introduces a novel bottom-up reasoning framework to address hallucinations in MLLMs.<n>Our framework systematically addresses potential issues in both visual and textual inputs by verifying and integrating perception-level information with cognition-level commonsense knowledge.
arXiv Detail & Related papers (2024-12-15T09:10:46Z) - From Pixels to Tokens: Revisiting Object Hallucinations in Large Vision-Language Models [15.401221354325672]
Hallucinations in large vision models (LVLMs) are a significant challenge, i.e., generating objects that are not presented in the visual input.
Recent studies often attribute hallucinations to a lack of understanding of visual input, yet ignore a more fundamental issue: the model's inability to extract or decouple visual features.
In this paper, we revisit the hallucinations in LVLMs from an architectural perspective, investigating whether the primary cause lies in the visual encoder (feature extraction) or the modal alignment module (feature decoupling)
arXiv Detail & Related papers (2024-10-09T11:46:32Z) - SLM Meets LLM: Balancing Latency, Interpretability and Consistency in Hallucination Detection [10.54378596443678]
Large language models (LLMs) are highly capable but face latency challenges in real-time applications.
This study optimize the real-time interpretable hallucination detection by introducing effective prompting techniques.
arXiv Detail & Related papers (2024-08-22T22:13:13Z) - VideoHallucer: Evaluating Intrinsic and Extrinsic Hallucinations in Large Video-Language Models [59.05674402770661]
This work introduces VideoHallucer, the first comprehensive benchmark for hallucination detection in large video-language models (LVLMs)
VideoHallucer categorizes hallucinations into two main types: intrinsic and extrinsic, offering further subcategories for detailed analysis.
arXiv Detail & Related papers (2024-06-24T06:21:59Z) - Detecting and Mitigating Hallucination in Large Vision Language Models via Fine-Grained AI Feedback [40.930238150365795]
We propose detecting and mitigating hallucinations in Large Vision Language Models (LVLMs) via fine-grained AI feedback.<n>We generate a small-size hallucination annotation dataset by proprietary models.<n>Then, we propose a detect-then-rewrite pipeline to automatically construct preference dataset for training hallucination mitigating model.
arXiv Detail & Related papers (2024-04-22T14:46:10Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
This paper introduces a method for automatically constructing model-specific hallucination datasets based on existing fact-checking datasets called AutoHall.
We also propose a zero-resource and black-box hallucination detection method based on self-contradiction.
arXiv Detail & Related papers (2023-09-30T05:20:02Z) - Siren's Song in the AI Ocean: A Survey on Hallucination in Large
Language Models [116.01843550398183]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks.
LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge.
arXiv Detail & Related papers (2023-09-03T16:56:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.