論文の概要: Unravel Anomalies: An End-to-end Seasonal-Trend Decomposition Approach
for Time Series Anomaly Detection
- arxiv url: http://arxiv.org/abs/2310.00268v1
- Date: Sat, 30 Sep 2023 06:08:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-05 05:32:39.510663
- Title: Unravel Anomalies: An End-to-end Seasonal-Trend Decomposition Approach
for Time Series Anomaly Detection
- Title(参考訳): Unravel 異常: 時系列異常検出のためのエンドツーエンドの季節トレンド分解手法
- Authors: Zhenwei Zhang, Ruiqi Wang, Ran Ding, Yuantao Gu
- Abstract要約: 従来の時系列異常検出(TAD)法は、複雑な時系列データの合成にしばしば苦労する。
本稿では,季節傾向分解を利用して,様々な種類の異常を特定の分解成分に関連付ける,エンド・ツー・エンドのTADモデルであるTADNetを紹介する。
合成データセットの事前学習と微調整を併用したトレーニング手法は,効率的な分解と高精度な異常検出のバランスを崩す。
- 参考スコア(独自算出の注目度): 22.002053911451604
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional Time-series Anomaly Detection (TAD) methods often struggle with
the composite nature of complex time-series data and a diverse array of
anomalies. We introduce TADNet, an end-to-end TAD model that leverages
Seasonal-Trend Decomposition to link various types of anomalies to specific
decomposition components, thereby simplifying the analysis of complex
time-series and enhancing detection performance. Our training methodology,
which includes pre-training on a synthetic dataset followed by fine-tuning,
strikes a balance between effective decomposition and precise anomaly
detection. Experimental validation on real-world datasets confirms TADNet's
state-of-the-art performance across a diverse range of anomalies.
- Abstract(参考訳): 従来の時系列異常検出(TAD)法は、複雑な時系列データと多様な異常データの組み合わせの性質に苦慮することが多い。
tadnetは,様々な種類の異常を特定の分解成分に関連付け,複雑な時系列の分析を簡素化し,検出性能を向上させるために,季節分解を利用するエンドツーエンドtadモデルである。
合成データセットの事前学習と微調整を併用したトレーニング手法は,効率的な分解と高精度な異常検出のバランスを崩す。
実世界のデータセットに対する実験的検証は、さまざまな異常領域にわたるTADNetの最先端のパフォーマンスを確認する。
関連論文リスト
- See it, Think it, Sorted: Large Multimodal Models are Few-shot Time Series Anomaly Analyzers [23.701716999879636]
時系列データの急激な増加に伴い,時系列異常検出(TSAD)はますます重要になりつつある。
本稿では,TMA(Time Series Anomaly Multimodal Analyzer)と呼ばれる先駆的なフレームワークを導入し,異常の検出と解釈を両立させる。
論文 参考訳(メタデータ) (2024-11-04T10:28:41Z) - MultiRC: Joint Learning for Time Series Anomaly Prediction and Detection with Multi-scale Reconstructive Contrast [20.857498201188566]
異常予測と検出の連立学習のための再構成学習とコントラスト学習を統合したMultiRCを提案する。
異常予測と検出の両方のタスクに対して、MultiRCは既存の最先端メソッドよりも優れています。
論文 参考訳(メタデータ) (2024-10-21T13:28:28Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARCは汎用的なGADアプローチであり、一対一のGADモデルで様々なグラフデータセットの異常を検出することができる。
ARCはコンテキスト内学習を備えており、ターゲットデータセットからデータセット固有のパターンを直接抽出することができる。
各種領域からの複数のベンチマークデータセットに対する大規模な実験は、ARCの優れた異常検出性能、効率、一般化性を示す。
論文 参考訳(メタデータ) (2024-05-27T02:42:33Z) - DACR: Distribution-Augmented Contrastive Reconstruction for Time-Series
Anomaly Detection [12.3866167448478]
時系列データの異常検出は、さまざまなアプリケーションにわたる障害、障害、脅威、異常を識別するために不可欠である。
近年、このトピックにディープラーニング技術が適用されているが、現実のシナリオではしばしば苦労している。
本稿では,これらの課題に対処するため,DACR(Distributed-Augmented Contrastive Reconstruction)を提案する。
論文 参考訳(メタデータ) (2024-01-20T16:56:52Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
我々は、先行のない異常発生パラダイムを導入し、GRADと呼ばれる革新的な教師なし異常検出フレームワークを開発した。
PatchDiffは、様々な種類の異常パターンを効果的に公開する。
MVTec ADとMVTec LOCOデータセットの両方の実験も、前述の観測をサポートする。
論文 参考訳(メタデータ) (2023-12-26T07:08:06Z) - SWoTTeD: An Extension of Tensor Decomposition to Temporal Phenotyping [0.0]
隠れ時間パターンを発見する新しい手法SWoTTeD(Sliding Window for Temporal Decomposition)を提案する。
我々は, 合成と実世界の両方のデータセットを用いて提案手法を検証し, パリ大病院のデータを用いた独自のユースケースを提案する。
その結果、SWoTTeDは最近の最先端テンソル分解モデルと同程度の精度で再現可能であることがわかった。
論文 参考訳(メタデータ) (2023-10-02T13:42:11Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
時系列異常検出(TSAD)の主な課題は、多くの実生活シナリオにおいてラベル付きデータの欠如である。
既存の異常検出手法の多くは、教師なしの方法で非ラベル時系列の正常な振る舞いを学習することに焦点を当てている。
本稿では,時系列異常検出のためのエンドツーエンドの自己教師型コントラアスティブ表現学習手法を提案する。
論文 参考訳(メタデータ) (2023-08-18T04:45:56Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Neural Contextual Anomaly Detection for Time Series [7.523820334642732]
本稿では,時系列における異常検出のためのフレームワークであるNeural Contextual Anomaly Detection (NCAD)を紹介する。
NCADは教師なし設定から教師なし設定までシームレスにスケールする。
我々は,提案手法が最先端の性能を得るための標準ベンチマークデータセットを実証的に実証した。
論文 参考訳(メタデータ) (2021-07-16T04:33:53Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。