Unravel Anomalies: An End-to-end Seasonal-Trend Decomposition Approach
for Time Series Anomaly Detection
- URL: http://arxiv.org/abs/2310.00268v2
- Date: Thu, 14 Dec 2023 08:24:45 GMT
- Title: Unravel Anomalies: An End-to-end Seasonal-Trend Decomposition Approach
for Time Series Anomaly Detection
- Authors: Zhenwei Zhang, Ruiqi Wang, Ran Ding, Yuantao Gu
- Abstract summary: Traditional Time-series Anomaly Detection (TAD) methods often struggle with the composite nature of complex time-series data.
We introduce TADNet, an end-to-end TAD model that leverages Seasonal-Trend Decomposition to link various types of anomalies to specific decomposition components.
Our training methodology, which includes pre-training on a synthetic dataset followed by fine-tuning, strikes a balance between effective decomposition and precise anomaly detection.
- Score: 22.002053911451604
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional Time-series Anomaly Detection (TAD) methods often struggle with
the composite nature of complex time-series data and a diverse array of
anomalies. We introduce TADNet, an end-to-end TAD model that leverages
Seasonal-Trend Decomposition to link various types of anomalies to specific
decomposition components, thereby simplifying the analysis of complex
time-series and enhancing detection performance. Our training methodology,
which includes pre-training on a synthetic dataset followed by fine-tuning,
strikes a balance between effective decomposition and precise anomaly
detection. Experimental validation on real-world datasets confirms TADNet's
state-of-the-art performance across a diverse range of anomalies.
Related papers
- See it, Think it, Sorted: Large Multimodal Models are Few-shot Time Series Anomaly Analyzers [23.701716999879636]
Time series anomaly detection (TSAD) is becoming increasingly vital due to the rapid growth of time series data.
We introduce a pioneering framework called the Time Series Anomaly Multimodal Analyzer (TAMA) to enhance both the detection and interpretation of anomalies.
arXiv Detail & Related papers (2024-11-04T10:28:41Z) - MultiRC: Joint Learning for Time Series Anomaly Prediction and Detection with Multi-scale Reconstructive Contrast [20.857498201188566]
We propose MultiRC to integrate reconstructive and contrastive learning for joint learning of anomaly prediction and detection.
For both anomaly prediction and detection tasks, MultiRC outperforms existing state-of-the-art methods.
arXiv Detail & Related papers (2024-10-21T13:28:28Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARC is a generalist GAD approach that enables a one-for-all'' GAD model to detect anomalies across various graph datasets on-the-fly.
equipped with in-context learning, ARC can directly extract dataset-specific patterns from the target dataset.
Extensive experiments on multiple benchmark datasets from various domains demonstrate the superior anomaly detection performance, efficiency, and generalizability of ARC.
arXiv Detail & Related papers (2024-05-27T02:42:33Z) - DACR: Distribution-Augmented Contrastive Reconstruction for Time-Series
Anomaly Detection [12.3866167448478]
Anomaly detection in time-series data is crucial for identifying faults, failures, threats, and outliers across a range of applications.
Recently, deep learning techniques have been applied to this topic, but they often struggle in real-world scenarios.
We propose Distribution-Augmented Contrastive Reconstruction (DACR) to tackle these challenges.
arXiv Detail & Related papers (2024-01-20T16:56:52Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
We introduce a prior-less anomaly generation paradigm and develop an innovative unsupervised anomaly detection framework named GRAD.
PatchDiff effectively expose various types of anomaly patterns.
experiments on both MVTec AD and MVTec LOCO datasets also support the aforementioned observation.
arXiv Detail & Related papers (2023-12-26T07:08:06Z) - SWoTTeD: An Extension of Tensor Decomposition to Temporal Phenotyping [0.0]
We propose SWoTTeD (Sliding Window for Temporal Decomposition), a novel method to discover hidden temporal patterns.
We validate our proposal using both synthetic and real-world datasets, and we present an original usecase using data from the Greater Paris University Hospital.
The results show that SWoTTeD achieves at least as accurate reconstruction as recent state-of-the-art tensor decomposition models.
arXiv Detail & Related papers (2023-10-02T13:42:11Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
One main challenge in time series anomaly detection (TSAD) is the lack of labelled data in many real-life scenarios.
Most of the existing anomaly detection methods focus on learning the normal behaviour of unlabelled time series in an unsupervised manner.
We introduce a novel end-to-end self-supervised ContrAstive Representation Learning approach for time series anomaly detection.
arXiv Detail & Related papers (2023-08-18T04:45:56Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Neural Contextual Anomaly Detection for Time Series [7.523820334642732]
We introduce Neural Contextual Anomaly Detection (NCAD), a framework for anomaly detection on time series.
NCAD scales seamlessly from the unsupervised to supervised setting.
We demonstrate empirically on standard benchmark datasets that our approach obtains a state-of-the-art performance.
arXiv Detail & Related papers (2021-07-16T04:33:53Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.