QUIZ: An Arbitrary Volumetric Point Matching Method for Medical Image
Registration
- URL: http://arxiv.org/abs/2310.00296v1
- Date: Sat, 30 Sep 2023 08:13:40 GMT
- Title: QUIZ: An Arbitrary Volumetric Point Matching Method for Medical Image
Registration
- Authors: Lin Liu, Xinxin Fan, Haoyang Liu, Chulong Zhang, Weibin Kong, Jingjing
Dai, Yuming Jiang, Yaoqin Xie, Xiaokun Liang
- Abstract summary: We propose a novel method for medical image registration based on arbitrary voxel point of interest matching, called query point quizzer (QUIZ)
We have validated this approach on a large deformation dataset of cervical cancer patients, with results indicating substantially smaller deviations compared to state-of-the-art methods.
- Score: 10.788848900099385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rigid pre-registration involving local-global matching or other large
deformation scenarios is crucial. Current popular methods rely on unsupervised
learning based on grayscale similarity, but under circumstances where different
poses lead to varying tissue structures, or where image quality is poor, these
methods tend to exhibit instability and inaccuracies. In this study, we propose
a novel method for medical image registration based on arbitrary voxel point of
interest matching, called query point quizzer (QUIZ). QUIZ focuses on the
correspondence between local-global matching points, specifically employing CNN
for feature extraction and utilizing the Transformer architecture for global
point matching queries, followed by applying average displacement for local
image rigid transformation. We have validated this approach on a large
deformation dataset of cervical cancer patients, with results indicating
substantially smaller deviations compared to state-of-the-art methods.
Remarkably, even for cross-modality subjects, it achieves results surpassing
the current state-of-the-art.
Related papers
- Self-supervised Semantic Segmentation: Consistency over Transformation [3.485615723221064]
We propose a novel self-supervised algorithm, textbfS$3$-Net, which integrates a robust framework based on the proposed Inception Large Kernel Attention (I-LKA) modules.
We leverage deformable convolution as an integral component to effectively capture and delineate lesion deformations for superior object boundary definition.
Our experimental results on skin lesion and lung organ segmentation tasks show the superior performance of our method compared to the SOTA approaches.
arXiv Detail & Related papers (2023-08-31T21:28:46Z) - Adaptive Face Recognition Using Adversarial Information Network [57.29464116557734]
Face recognition models often degenerate when training data are different from testing data.
We propose a novel adversarial information network (AIN) to address it.
arXiv Detail & Related papers (2023-05-23T02:14:11Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
We present a self-supervised algorithm for several classification tasks within hematoxylin and eosin stained images of breast cancer.
Our method achieves the state-of-the-art performance on several publicly available breast cancer datasets.
arXiv Detail & Related papers (2022-11-14T18:16:36Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
We present an Adaptive Local-Component-aware Graph Convolutional Network for skeleton-based action recognition.
Our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.
arXiv Detail & Related papers (2022-09-21T02:33:07Z) - Unsupervised Domain Adaptation Using Feature Disentanglement And GCNs
For Medical Image Classification [5.6512908295414]
We propose an unsupervised domain adaptation approach that uses graph neural networks and, disentangled semantic and domain invariant structural features.
We test the proposed method for classification on two challenging medical image datasets with distribution shifts.
Experiments show our method achieves state-of-the-art results compared to other domain adaptation methods.
arXiv Detail & Related papers (2022-06-27T09:02:16Z) - ScoreNet: Learning Non-Uniform Attention and Augmentation for
Transformer-Based Histopathological Image Classification [11.680355561258427]
High-resolution images hinder progress in digital pathology.
patch-based processing often incorporates multiple instance learning (MIL) to aggregate local patch-level representations yielding image-level prediction.
This paper proposes a transformer-based architecture specifically tailored for histological image classification.
It combines fine-grained local attention with a coarse global attention mechanism to learn meaningful representations of high-resolution images at an efficient computational cost.
arXiv Detail & Related papers (2022-02-15T16:55:09Z) - Dual-Flow Transformation Network for Deformable Image Registration with
Region Consistency Constraint [95.30864269428808]
Current deep learning (DL)-based image registration approaches learn the spatial transformation from one image to another by leveraging a convolutional neural network.
We present a novel dual-flow transformation network with region consistency constraint which maximizes the similarity of ROIs within a pair of images.
Experiments on four public 3D MRI datasets show that the proposed method achieves the best registration performance in accuracy and generalization.
arXiv Detail & Related papers (2021-12-04T05:30:44Z) - LocalTrans: A Multiscale Local Transformer Network for Cross-Resolution
Homography Estimation [52.63874513999119]
Cross-resolution image alignment is a key problem in multiscale giga photography.
Existing deep homography methods neglecting the explicit formulation of correspondences between them, which leads to degraded accuracy in cross-resolution challenges.
We propose a local transformer network embedded within a multiscale structure to explicitly learn correspondences between the multimodal inputs.
arXiv Detail & Related papers (2021-06-08T02:51:45Z) - Consistent Posterior Distributions under Vessel-Mixing: A Regularization
for Cross-Domain Retinal Artery/Vein Classification [30.30848090813239]
We propose a vessel-mixing based consistency regularization framework, for cross-domain learning in retinal A/V classification.
Our method achieves the state-of-the-art cross-domain performance, which is also close to the upper bound obtained by fully supervised learning on target domain.
arXiv Detail & Related papers (2021-03-16T14:18:35Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - Image Response Regression via Deep Neural Networks [4.646077947295938]
We propose a novel nonparametric approach in the framework of spatially varying coefficient models, where the spatially varying functions are estimated through deep neural networks.
A key idea in our approach is to treat the image voxels as spatial effective samples, which alleviates the limited sample size issue that haunts the majority of medical imaging studies.
We demonstrate the efficacy of the method through intensive simulations, and further illustrate its advantages analyses of two functional magnetic resonance imaging datasets.
arXiv Detail & Related papers (2020-06-17T14:45:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.