Effect of alternating layered ansatzes on trainability of projected
quantum kernel
- URL: http://arxiv.org/abs/2310.00361v1
- Date: Sat, 30 Sep 2023 12:32:39 GMT
- Title: Effect of alternating layered ansatzes on trainability of projected
quantum kernel
- Authors: Yudai Suzuki, Muyuan Li
- Abstract summary: We analytically and numerically investigate the vanishing similarity issue in projected quantum kernels with alternating layered ansatzes.
We find that variance depends on circuit depth, size of local unitary blocks and initial state, indicating the issue is avoidable if shallow alternating layered ansatzes are used.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum kernel methods have been actively examined from both theoretical and
practical perspectives due to the potential of quantum advantage in machine
learning tasks. Despite a provable advantage of fine-tuned quantum kernels for
specific problems, widespread practical usage of quantum kernel methods
requires resolving the so-called vanishing similarity issue, where
exponentially vanishing variance of the quantum kernels causes implementation
infeasibility and trainability problems. In this work, we analytically and
numerically investigate the vanishing similarity issue in projected quantum
kernels with alternating layered ansatzes. We find that variance depends on
circuit depth, size of local unitary blocks and initial state, indicating the
issue is avoidable if shallow alternating layered ansatzes are used and initial
state is not highly entangled. Our work provides some insights into design
principles of projected quantum kernels and implies the need for caution when
using highly entangled states as input to quantum kernel-based learning models.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - In Search of Quantum Advantage: Estimating the Number of Shots in Quantum Kernel Methods [30.565491081930997]
We develop an approach for estimating desired precision of kernel values, which is translated into the number of circuit runs.
We stress that quantum kernel methods should not only be considered from the machine learning performance perspective, but also from the context of the resource consumption.
arXiv Detail & Related papers (2024-07-22T16:29:35Z) - Phase-space negativity as a computational resource for quantum kernel methods [2.5499055723658097]
Quantum kernel methods are a proposal for achieving quantum computational advantage in machine learning.
We provide sufficient conditions for the efficient classical estimation of quantum kernel functions for bosonic systems.
Our results underpin the role of the negativity in phase-space quasi-probability distributions as an essential resource in quantum machine learning.
arXiv Detail & Related papers (2024-05-20T21:18:53Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
We present a data-driven approach that automates the design of problem-specific quantum feature maps.
Our work highlights the substantial role of deep learning in advancing quantum machine learning.
arXiv Detail & Related papers (2024-01-20T03:11:59Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Variational Quantum Kernels with Task-Specific Quantum Metric Learning [0.8722210937404288]
Kernel methods rely on the notion of similarity between points in a higher (possibly infinite) dimensional feature space.
We discuss the use of variational quantum kernels with task-specific quantum metric learning to generate optimal quantum embeddings.
arXiv Detail & Related papers (2022-11-08T18:36:25Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - Quantum tangent kernel [0.8921166277011345]
In this work, we explore a quantum machine learning model with a deep parameterized quantum circuit.
We find that parameters of a deep enough quantum circuit do not move much from its initial values during training.
Such a deep variational quantum machine learning can be described by another emergent kernel, quantum tangent kernel.
arXiv Detail & Related papers (2021-11-04T15:38:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.