In Search of Quantum Advantage: Estimating the Number of Shots in Quantum Kernel Methods
- URL: http://arxiv.org/abs/2407.15776v1
- Date: Mon, 22 Jul 2024 16:29:35 GMT
- Title: In Search of Quantum Advantage: Estimating the Number of Shots in Quantum Kernel Methods
- Authors: Artur Miroszewski, Marco Fellous Asiani, Jakub Mielczarek, Bertrand Le Saux, Jakub Nalepa,
- Abstract summary: We develop an approach for estimating desired precision of kernel values, which is translated into the number of circuit runs.
We stress that quantum kernel methods should not only be considered from the machine learning performance perspective, but also from the context of the resource consumption.
- Score: 30.565491081930997
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Machine Learning (QML) has gathered significant attention through approaches like Quantum Kernel Machines. While these methods hold considerable promise, their quantum nature presents inherent challenges. One major challenge is the limited resolution of estimated kernel values caused by the finite number of circuit runs performed on a quantum device. In this study, we propose a comprehensive system of rules and heuristics for estimating the required number of circuit runs in quantum kernel methods. We introduce two critical effects that necessitate an increased measurement precision through additional circuit runs: the spread effect and the concentration effect. The effects are analyzed in the context of fidelity and projected quantum kernels. To address these phenomena, we develop an approach for estimating desired precision of kernel values, which, in turn, is translated into the number of circuit runs. Our methodology is validated through extensive numerical simulations, focusing on the problem of exponential value concentration. We stress that quantum kernel methods should not only be considered from the machine learning performance perspective, but also from the context of the resource consumption. The results provide insights into the possible benefits of quantum kernel methods, offering a guidance for their application in quantum machine learning tasks.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
We present a data-driven approach that automates the design of problem-specific quantum feature maps.
Our work highlights the substantial role of deep learning in advancing quantum machine learning.
arXiv Detail & Related papers (2024-01-20T03:11:59Z) - Effect of alternating layered ansatzes on trainability of projected
quantum kernel [0.0]
We analytically and numerically investigate the vanishing similarity issue in projected quantum kernels with alternating layered ansatzes.
We find that variance depends on circuit depth, size of local unitary blocks and initial state, indicating the issue is avoidable if shallow alternating layered ansatzes are used.
arXiv Detail & Related papers (2023-09-30T12:32:39Z) - Exponential concentration in quantum kernel methods [0.0]
We study the performance of quantum kernel models from the perspective of resources needed to accurately estimate kernel values.
We identify four sources that can lead to concentration including: expressivity of data embedding, global measurements, entanglement and noise.
arXiv Detail & Related papers (2022-08-23T16:06:10Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Quantum tangent kernel [0.8921166277011345]
In this work, we explore a quantum machine learning model with a deep parameterized quantum circuit.
We find that parameters of a deep enough quantum circuit do not move much from its initial values during training.
Such a deep variational quantum machine learning can be described by another emergent kernel, quantum tangent kernel.
arXiv Detail & Related papers (2021-11-04T15:38:52Z) - Training Quantum Embedding Kernels on Near-Term Quantum Computers [0.08563354084119063]
Quantum embedding kernels (QEKs) constructed by embedding data into the Hilbert space of a quantum computer are a particular quantum kernel technique.
We first provide an accessible introduction to quantum embedding kernels and then analyze the practical issues arising when realizing them on a noisy near-term quantum computer.
arXiv Detail & Related papers (2021-05-05T18:41:13Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
We show that the advantage of quantum kernels is vanished for large size datasets, few number of measurements, and large system noise.
Our work provides theoretical guidance of exploring advanced quantum kernels to attain quantum advantages on NISQ devices.
arXiv Detail & Related papers (2021-03-31T02:41:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.