Unveiling the Unborn: Advancing Fetal Health Classification through Machine Learning
- URL: http://arxiv.org/abs/2310.00505v2
- Date: Fri, 6 Sep 2024 09:58:55 GMT
- Title: Unveiling the Unborn: Advancing Fetal Health Classification through Machine Learning
- Authors: Sujith K Mandala,
- Abstract summary: This research paper presents a novel machine-learning approach for fetal health classification.
The proposed model achieves an impressive accuracy of 98.31% on a test set.
By incorporating multiple data points, our model offers a more holistic and reliable evaluation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fetal health classification is a critical task in obstetrics, enabling early identification and management of potential health problems. However, it remains challenging due to data complexity and limited labeled samples. This research paper presents a novel machine-learning approach for fetal health classification, leveraging a LightGBM classifier trained on a comprehensive dataset. The proposed model achieves an impressive accuracy of 98.31% on a test set. Our findings demonstrate the potential of machine learning in enhancing fetal health classification, offering a more objective and accurate assessment. Notably, our approach combines various features, such as fetal heart rate, uterine contractions, and maternal blood pressure, to provide a comprehensive evaluation. This methodology holds promise for improving early detection and treatment of fetal health issues, ensuring better outcomes for both mothers and babies. Beyond the high accuracy achieved, the novelty of our approach lies in its comprehensive feature selection and assessment methodology. By incorporating multiple data points, our model offers a more holistic and reliable evaluation compared to traditional methods. This research has significant implications in the field of obstetrics, paving the way for advancements in early detection and intervention of fetal health concerns. Future work involves validating the model on a larger dataset and developing a clinical application. Ultimately, we anticipate that our research will revolutionize the assessment and management of fetal health, contributing to improved healthcare outcomes for expectant mothers and their babies.
Related papers
- Advancements In Heart Disease Prediction: A Machine Learning Approach For Early Detection And Risk Assessment [0.0]
This paper comprehends, assess, and analyze the role, relevance, and efficiency of machine learning models in predicting heart disease risks using clinical data.
The Support Vector Machine (SVM) demonstrates the highest accuracy at 91.51%, confirming its superiority among the evaluated models in terms of predictive capability.
arXiv Detail & Related papers (2024-10-16T22:32:19Z) - The OxMat dataset: a multimodal resource for the development of AI-driven technologies in maternal and newborn child health [0.0]
This paper introduces the Oxford Maternity (OxMat) dataset, the world's largest curated dataset of cardiotocography (CTGs)
OxMat dataset addresses the critical gap in women's health data by providing over 177,211 unique CTG recordings from 51,036 pregnancies, carefully curated and reviewed since 1991.
The dataset also comprises over 200 antepartum, intrapartum and postpartum clinical variables, ensuring near-complete data for crucial outcomes such as stillbirth and acidaemia.
arXiv Detail & Related papers (2024-04-11T09:52:39Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Classification Methods Based on Machine Learning for the Analysis of
Fetal Health Data [1.3597551064547502]
We have analyzed the classification performance of various machine learning models for fetal health analysis.
A TabNet model on a fetal health dataset provides a classification accuracy of 94.36%.
arXiv Detail & Related papers (2023-11-18T04:01:46Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - An Improved Model Ensembled of Different Hyper-parameter Tuned Machine
Learning Algorithms for Fetal Health Prediction [1.332560004325655]
We propose a robust ensemble model called ensemble of tuned Support Vector Machine and ExtraTrees for predicting fetal health.
Our proposed ETSE model outperformed the other models with 100% precision, 100% recall, 100% F1-score, and 99.66% accuracy.
arXiv Detail & Related papers (2023-05-26T16:40:44Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Hybrid Attention for Automatic Segmentation of Whole Fetal Head in
Prenatal Ultrasound Volumes [52.53375964591765]
We propose the first fully-automated solution to segment the whole fetal head in US volumes.
The segmentation task is firstly formulated as an end-to-end volumetric mapping under an encoder-decoder deep architecture.
We then combine the segmentor with a proposed hybrid attention scheme (HAS) to select discriminative features and suppress the non-informative volumetric features.
arXiv Detail & Related papers (2020-04-28T14:43:05Z) - A survey of statistical learning techniques as applied to inexpensive
pediatric Obstructive Sleep Apnea data [3.1373682691616787]
obstructive sleep apnea affects an estimated 1-5% of elementary-school aged children.
Swift diagnosis and treatment are critical to a child's growth and development, but the variability of symptoms and the complexity of the available data make this a challenge.
We apply correlation networks, the Mapper algorithm from topological data analysis, and singular value decomposition in a process of exploratory data analysis.
arXiv Detail & Related papers (2020-02-17T18:15:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.