論文の概要: CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models
- arxiv url: http://arxiv.org/abs/2405.12063v2
- Date: Sat, 1 Jun 2024 07:35:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 14:29:15.579970
- Title: CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models
- Title(参考訳): CLAMBER:大規模言語モデルにおける曖昧な情報要求の同定と明確化のベンチマーク
- Authors: Tong Zhang, Peixin Qin, Yang Deng, Chen Huang, Wenqiang Lei, Junhong Liu, Dingnan Jin, Hongru Liang, Tat-Seng Chua,
- Abstract要約: 大規模言語モデル(LLM)を評価するベンチマークであるCLAMBERを紹介する。
分類を基盤として12Kの高品質なデータを構築し, 市販のLCMの強度, 弱点, 潜在的なリスクを評価する。
本研究は, あいまいなユーザクエリの特定と明確化において, 現在のLCMの実用性に限界があることを示唆する。
- 参考スコア(独自算出の注目度): 60.59638232596912
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are increasingly used to meet user information needs, but their effectiveness in dealing with user queries that contain various types of ambiguity remains unknown, ultimately risking user trust and satisfaction. To this end, we introduce CLAMBER, a benchmark for evaluating LLMs using a well-organized taxonomy. Building upon the taxonomy, we construct ~12K high-quality data to assess the strengths, weaknesses, and potential risks of various off-the-shelf LLMs. Our findings indicate the limited practical utility of current LLMs in identifying and clarifying ambiguous user queries, even enhanced by chain-of-thought (CoT) and few-shot prompting. These techniques may result in overconfidence in LLMs and yield only marginal enhancements in identifying ambiguity. Furthermore, current LLMs fall short in generating high-quality clarifying questions due to a lack of conflict resolution and inaccurate utilization of inherent knowledge. In this paper, CLAMBER presents a guidance and promotes further research on proactive and trustworthy LLMs. Our dataset is available at https://github.com/zt991211/CLAMBER
- Abstract(参考訳): 大規模言語モデル(LLM)は、ユーザ情報のニーズを満たすために使われることが多いが、様々な種類のあいまいさを含むユーザクエリを扱う上での有効性は依然として不明であり、最終的にはユーザの信頼と満足度を損なうことになる。
この目的のために,よく組織化された分類法を用いてLCMを評価するためのベンチマークであるCLAMBERを紹介した。
分類学に基づいて, 様々な既成のLCMの強度, 弱点, 潜在的なリスクを評価するために, 約12Kの高品質なデータを構築した。
以上の結果から,現在のLCMが不明瞭なユーザクエリを識別し,明確化するためには,チェーン・オブ・ソート(CoT)や数発のプロンプトによって強化されていることが示唆された。
これらの技術はLSMの過信を招き、曖昧さの識別において限界的な拡張しか得られない。
さらに、現在のLLMは、紛争解決の欠如と固有の知識の不正確な利用により、質の高い明確な質問を生成するのに不足している。
本稿では,CLAMBERを指導し,積極的かつ信頼性の高いLCMのさらなる研究を促進する。
私たちのデータセットはhttps://github.com/zt991211/CLAMBERで利用可能です。
関連論文リスト
- Detecting Hallucinations in Large Language Model Generation: A Token Probability Approach [0.0]
LLM(Large Language Models)は、幻覚と呼ばれる不正確な出力を生成する。
本稿では,トークンから得られる4つの数値的特徴と,他の評価者から得られる語彙的確率を用いた教師付き学習手法を提案する。
この方法は有望な結果をもたらし、3つの異なるベンチマークで複数のタスクで最先端の結果を上回る。
論文 参考訳(メタデータ) (2024-05-30T03:00:47Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
本稿では,スリムプロキシモデルを用いた大規模言語モデル (LLM) における知識不足を検知する新しい協調手法であるSlimPLMを提案する。
パラメータがはるかに少ないプロキシモデルを採用し、回答を回答としています。
ヒューリスティックな回答は、LLM内の既知の未知の知識と同様に、ユーザの質問に答えるために必要な知識を予測するのに使用される。
論文 参考訳(メタデータ) (2024-02-19T11:11:08Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
大規模言語モデル(LLM)は、知識探索タスクにおける高い性能のため、知識ベースとして扱われてきた。
LLMが実際に正しい答えを連続的に生成する能力をどのように評価するか。
LLMの信頼性を直接測定するための新しい指標であるMOdel kNowledge relIabiliTy score (MONITOR)を提案する。
論文 参考訳(メタデータ) (2023-10-15T12:40:30Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
本稿では,事前学習した報酬モデルを診断ツールとして活用する,新たな合理的評価手法を提案する。
より長い会話は、質問を理解する能力の観点から言語モデルの包括的把握を示す。
この結果から,LLMは日常言語でよく使われる単語レベルの摂動に対する脆弱性をしばしば示している。
論文 参考訳(メタデータ) (2023-09-20T09:23:46Z) - Assessing Hidden Risks of LLMs: An Empirical Study on Robustness,
Consistency, and Credibility [37.682136465784254]
我々は、ChatGPT、LLaMA、OPTを含む、主流の大規模言語モデル(LLM)に100万以上のクエリを実行します。
入力が極端に汚染された場合でも、ChatGPTは正しい答えを得ることができる。
そこで本研究では,LCMによる評価において,そのようなデータの有効性を大まかに決定する新たな指標を提案する。
論文 参考訳(メタデータ) (2023-05-15T15:44:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。