論文の概要: Integration of Graph Neural Network and Neural-ODEs for Tumor Dynamic Prediction
- arxiv url: http://arxiv.org/abs/2310.00926v2
- Date: Wed, 27 Mar 2024 19:34:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 21:43:17.469062
- Title: Integration of Graph Neural Network and Neural-ODEs for Tumor Dynamic Prediction
- Title(参考訳): 腫瘍動的予測のためのグラフニューラルネットワークとニューラルネットワークの統合
- Authors: Omid Bazgir, Zichen Wang, Ji Won Park, Marc Hafner, James Lu,
- Abstract要約: 本稿では,二部グラフ畳み込みニューラルネットワーク(GCN)とニューラル正規微分方程式(Neural-ODE)を組み合わせたグラフエンコーダを提案する。
まず,本手法が経験的モデルにより著しく改善される腫瘍のダイナミックモデルを発見することができることを示す。
本研究は, 提案手法が有望であり, プリクリニカル・セッティングに応用できる可能性が示唆された。
- 参考スコア(独自算出の注目度): 4.850774880198265
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In anti-cancer drug development, a major scientific challenge is disentangling the complex relationships between high-dimensional genomics data from patient tumor samples, the corresponding tumor's organ of origin, the drug targets associated with given treatments and the resulting treatment response. Furthermore, to realize the aspirations of precision medicine in identifying and adjusting treatments for patients depending on the therapeutic response, there is a need for building tumor dynamic models that can integrate both longitudinal tumor size as well as multimodal, high-content data. In this work, we take a step towards enhancing personalized tumor dynamic predictions by proposing a heterogeneous graph encoder that utilizes a bipartite Graph Convolutional Neural network (GCN) combined with Neural Ordinary Differential Equations (Neural-ODEs). We applied the methodology to a large collection of patient-derived xenograft (PDX) data, spanning a wide variety of treatments (as well as their combinations) on tumors that originated from a number of different organs. We first show that the methodology is able to discover a tumor dynamic model that significantly improves upon an empirical model which is in current use. Additionally, we show that the graph encoder is able to effectively utilize multimodal data to enhance tumor predictions. Our findings indicate that the methodology holds significant promise and offers potential applications in pre-clinical settings.
- Abstract(参考訳): 抗がん剤開発において、大きな科学的課題は、患者の腫瘍サンプルからの高次元ゲノムデータ、対応する腫瘍由来の臓器、与えられた治療に関連する薬物標的、および結果として生じる治療反応の間の複雑な関係を解消することである。
さらに, 治療反応に応じて治療薬を同定・調整する上での精密医療の願望を実現するためには, 腫瘍径とマルチモーダル・ハイコンテントデータを統合した腫瘍ダイナミックモデルを構築する必要がある。
本研究では,2部グラフ畳み込みニューラルネットワーク(GCN)とニューラルネットワーク(Neural Ordinary Differential Equations,Neural-ODEs)を組み合わせた異種グラフエンコーダを提案する。
本手法を患者由来のXenograft(PDX)データ集に適用し,様々な臓器由来の腫瘍に対する多種多様な治療(およびそれらの組み合わせ)を行った。
まず,現在使用されている経験的モデルにおいて,腫瘍の動的モデルが大幅に改善されていることを明らかにする。
さらに,グラフエンコーダはマルチモーダルデータを効果的に活用し,腫瘍の予測を向上させることができることを示す。
本研究は, 提案手法が有望であり, プリクリニカル・セッティングに応用できる可能性が示唆された。
関連論文リスト
- Block Graph Neural Networks for tumor heterogeneity prediction [0.3611754783778107]
正確な腫瘍分類は有効な治療法の選択に不可欠である。
標準腫瘍グレーディングは、細胞分化に基づく腫瘍を分類するが、スタンドアロンの処置としては推奨されない。
腫瘍の進化をシミュレートし,腫瘍分類のための人工データセットを生成する数学的モデルを構築することを提案する。
論文 参考訳(メタデータ) (2025-02-08T05:48:09Z) - Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
がん予後は、患者の予後と生存率を予測する重要なタスクである。
これまでの研究では、臨床ノート、医療画像、ゲノムデータなどの多様なデータモダリティを統合し、補完的な情報を活用している。
既存のアプローチには2つの大きな制限がある。まず、各病院の患者記録など、各種のトレーニングに新しく到着したデータを組み込むことに苦慮する。
第二に、ほとんどのマルチモーダル統合手法は単純化された結合やタスク固有のパイプラインに依存しており、モダリティ間の複雑な相互依存を捉えることができない。
論文 参考訳(メタデータ) (2025-01-30T06:49:57Z) - Physics-Regularized Multi-Modal Image Assimilation for Brain Tumor Localization [3.666412718346211]
本稿では,データ駆動と物理に基づくコスト関数を統合する新しい手法を提案する。
腫瘍組織と脳組織の学習分布が,それぞれの成長と弾性の方程式にどの程度順応するかを定量化する,ユニークな離散化手法を提案する。
論文 参考訳(メタデータ) (2024-09-30T15:36:14Z) - Towards Generalizable Tumor Synthesis [48.45704270448412]
腫瘍合成は、医用画像における人工腫瘍の作成を可能にし、腫瘍の検出とセグメンテーションのためのAIモデルのトレーニングを容易にする。
本論文は, 臨界観察を生かして, 一般化可能な腫瘍合成に向けて進歩的な一歩を踏み出した。
私たちは、Diffusion Modelsのような生成AIモデルが、単一の臓器から限られた数の腫瘍例を訓練しても、様々な臓器に一般化された現実的な腫瘍を作成できることを確認した。
論文 参考訳(メタデータ) (2024-02-29T18:57:39Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
脳腫瘍は世界で最も致命的ながんの1つであり、子供や高齢者に非常に多い。
本稿では,MRI脳腫瘍グレーディングの課題に対処するために,新たな多モード学習法を提案する。
論文 参考訳(メタデータ) (2024-01-17T07:54:49Z) - Automated ensemble method for pediatric brain tumor segmentation [0.0]
本研究では,ONet と UNet の修正版を用いた新しいアンサンブル手法を提案する。
データ拡張により、さまざまなスキャンプロトコル間の堅牢性と精度が保証される。
以上の結果から,この高度なアンサンブルアプローチは診断精度の向上に期待できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-08-14T15:29:32Z) - Explainable Deep Learning for Tumor Dynamic Modeling and Overall
Survival Prediction using Neural-ODE [0.0]
本稿では,腫瘍ダイナミックニューラル-ODEを薬理学的インフォームドニューラルネットワークとして用いることを提案する。
我々は,TDNODEが既存のモデルの重要な限界を克服し,乱れたデータから偏りのない予測を行うことを示す。
得られた測定値を用いて,患者の全身生存率(OS)を高い精度で予測できることを示す。
論文 参考訳(メタデータ) (2023-08-02T18:08:27Z) - MaxCorrMGNN: A Multi-Graph Neural Network Framework for Generalized
Multimodal Fusion of Medical Data for Outcome Prediction [3.2889220522843625]
我々はMaxCorr MGNNと呼ばれる革新的な融合手法を開発し、患者内および患者間の非線形モダリティ相関をモデル化する。
次に,多層グラフにおけるタスクインフォームド推論のための汎用多層グラフニューラルネットワーク(MGNN)を初めて設計する。
我々は,本モデルを結核データセットにおける結果予測タスクとして評価し,最先端のニューラルネットワーク,グラフベース,従来の融合技術より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-07-13T23:52:41Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
深層学習に基づく脳腫瘍再発位置予測ネットワークを提案する。
まず、パブリックデータセットBraTS 2021上で、マルチモーダル脳腫瘍セグメンテーションネットワークをトレーニングする。
次に、事前訓練されたエンコーダを、リッチなセマンティックな特徴を抽出するために、プライベートデータセットに転送する。
2つのデコーダは、現在の脳腫瘍を共同に分断し、将来の腫瘍再発位置を予測するために構築されている。
論文 参考訳(メタデータ) (2023-04-11T02:45:38Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
本稿では,抗がん剤感受性の予測にトランスファーラーニングを適用した。
我々は、ソースデータセット上で予測モデルをトレーニングし、ターゲットデータセット上でそれを洗練する古典的な転送学習フレームワークを適用した。
アンサンブル転送学習パイプラインは、LightGBMと異なるアーキテクチャを持つ2つのディープニューラルネットワーク(DNN)モデルを使用して実装されている。
論文 参考訳(メタデータ) (2020-05-13T20:29:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。