Advancements in Optimization: Adaptive Differential Evolution with
Diversification Strategy
- URL: http://arxiv.org/abs/2310.01057v3
- Date: Fri, 6 Oct 2023 08:47:42 GMT
- Title: Advancements in Optimization: Adaptive Differential Evolution with
Diversification Strategy
- Authors: Sarit Maitra
- Abstract summary: The study employs single-objective optimization in a two-dimensional space and runs ADEDS on each of the benchmark functions with multiple iterations.
ADEDS consistently outperforms standard DE for a variety of optimization challenges, including functions with numerous local optima, plate-shaped, valley-shaped, stretched-shaped, and noisy functions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This study presents a population-based evolutionary optimization algorithm
(Adaptive Differential Evolution with Diversification Strategies or ADEDS). The
algorithm developed using the sinusoidal objective function and subsequently
evaluated with a wide-ranging set of 22 benchmark functions, including
Rosenbrock, Rastrigin, Ackley, and DeVilliersGlasser02, among others. The study
employs single-objective optimization in a two-dimensional space and runs ADEDS
on each of the benchmark functions with multiple iterations. In terms of
convergence speed and solution quality, ADEDS consistently outperforms standard
DE for a variety of optimization challenges, including functions with numerous
local optima, plate-shaped, valley-shaped, stretched-shaped, and noisy
functions. This effectiveness holds great promise for optimizing supply chain
operations, driving cost reductions, and ultimately enhancing overall
performance. The findings imply the importance of effective optimization
strategy for improving supply chain efficiency, reducing costs, and enhancing
overall performance.
Related papers
- Integrating Chaotic Evolutionary and Local Search Techniques in Decision Space for Enhanced Evolutionary Multi-Objective Optimization [1.8130068086063336]
This paper focuses on both Single-Objective Multi-Modal Optimization (SOMMOP) and Multi-Objective Optimization (MOO)
In SOMMOP, we integrate chaotic evolution with niching techniques, as well as Persistence-Based Clustering combined with Gaussian mutation.
For MOO, we extend these methods into a comprehensive framework that incorporates Uncertainty-Based Selection, Adaptive Tuning, and introduces a radius ( R ) concept in deterministic crowding.
arXiv Detail & Related papers (2024-11-12T15:18:48Z) - An Invariant Information Geometric Method for High-Dimensional Online
Optimization [9.538618632613714]
We introduce a full invariance oriented evolution strategies algorithm, derived from its corresponding framework.
We benchmark SynCMA against leading algorithms in Bayesian optimization and evolution strategies.
In all scenarios, SynCMA demonstrates great competence, if not dominance, over other algorithms in sample efficiency.
arXiv Detail & Related papers (2024-01-03T07:06:26Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Enhancing Optimization Through Innovation: The Multi-Strategy Improved
Black Widow Optimization Algorithm (MSBWOA) [11.450701963760817]
This paper introduces a Multi-Strategy Improved Black Widow Optimization Algorithm (MSBWOA)
It is designed to enhance the performance of the standard Black Widow Algorithm (BW) in solving complex optimization problems.
It integrates four key strategies: initializing the population using Tent chaotic mapping to enhance diversity and initial exploratory capability; implementing mutation optimization on the least fit individuals to maintain dynamic population and prevent premature convergence; and adding a random perturbation strategy to enhance the algorithm's ability to escape local optima.
arXiv Detail & Related papers (2023-12-20T19:55:36Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
We introduce a framework for system flexibility that allows us to study the ability of an algorithm to transfer solutions from previous optimization tasks.
We study the flexibility of NSGA-II, which we extend by two variants: 1) varying goals, that optimize solutions for two tasks simultaneously to obtain in-between source solutions expected to be more adaptable, and 2) active-inactive genotype, that accommodates different possibilities that can be activated or deactivated.
Results show that adaption with standard NSGA-II greatly reduces the number of evaluations required for optimization to a target goal, while the proposed variants further improve the adaption costs.
arXiv Detail & Related papers (2023-05-31T12:07:50Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Evolving Pareto-Optimal Actor-Critic Algorithms for Generalizability and
Stability [67.8426046908398]
Generalizability and stability are two key objectives for operating reinforcement learning (RL) agents in the real world.
This paper presents MetaPG, an evolutionary method for automated design of actor-critic loss functions.
arXiv Detail & Related papers (2022-04-08T20:46:16Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.