Enhancing Optimization Through Innovation: The Multi-Strategy Improved
Black Widow Optimization Algorithm (MSBWOA)
- URL: http://arxiv.org/abs/2312.13395v1
- Date: Wed, 20 Dec 2023 19:55:36 GMT
- Title: Enhancing Optimization Through Innovation: The Multi-Strategy Improved
Black Widow Optimization Algorithm (MSBWOA)
- Authors: Xin Xu
- Abstract summary: This paper introduces a Multi-Strategy Improved Black Widow Optimization Algorithm (MSBWOA)
It is designed to enhance the performance of the standard Black Widow Algorithm (BW) in solving complex optimization problems.
It integrates four key strategies: initializing the population using Tent chaotic mapping to enhance diversity and initial exploratory capability; implementing mutation optimization on the least fit individuals to maintain dynamic population and prevent premature convergence; and adding a random perturbation strategy to enhance the algorithm's ability to escape local optima.
- Score: 11.450701963760817
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a Multi-Strategy Improved Black Widow Optimization
Algorithm (MSBWOA), designed to enhance the performance of the standard Black
Widow Algorithm (BW) in solving complex optimization problems. The proposed
algorithm integrates four key strategies: initializing the population using
Tent chaotic mapping to enhance diversity and initial exploratory capability;
implementing mutation optimization on the least fit individuals to maintain
dynamic population and prevent premature convergence; incorporating a
non-linear inertia weight to balance global exploration and local exploitation;
and adding a random perturbation strategy to enhance the algorithm's ability to
escape local optima. Evaluated through a series of standard test functions, the
MSBWOA demonstrates significant performance improvements in various dimensions,
particularly in convergence speed and solution quality. Experimental results
show that compared to the traditional BW algorithm and other existing
optimization methods, the MSBWOA exhibits better stability and efficiency in
handling a variety of optimization problems. These findings validate the
effectiveness of the proposed strategies and offer a new solution approach for
complex optimization challenges.
Related papers
- Sharpness-Aware Black-Box Optimization [47.95184866255126]
We propose a Sharpness-Aware Black-box Optimization (SABO) algorithm, which applies a sharpness-aware minimization strategy to improve the model generalization.
Empirically, extensive experiments on the black-box prompt fine-tuning tasks demonstrate the effectiveness of the proposed SABO method in improving model generalization performance.
arXiv Detail & Related papers (2024-10-16T11:08:06Z) - Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - A Nonlinear African Vulture Optimization Algorithm Combining Henon Chaotic Mapping Theory and Reverse Learning Competition Strategy [9.252838762325927]
The Henon chaotic mapping theory and elite population strategy are proposed to improve the randomness and diversity of the vulture's initial population.
The reverse learning competition strategy is designed to expand the discovery fields for the optimal solution.
The proposed HWEAVOA is ranked first in all test functions, which is superior to the comparison algorithms in convergence speed, optimization ability, and solution stability.
arXiv Detail & Related papers (2024-03-22T01:20:45Z) - Model Uncertainty in Evolutionary Optimization and Bayesian Optimization: A Comparative Analysis [5.6787965501364335]
Black-box optimization problems are common in many real-world applications.
These problems require optimization through input-output interactions without access to internal workings.
Two widely used gradient-free optimization techniques are employed to address such challenges.
This paper aims to elucidate the similarities and differences in the utilization of model uncertainty between these two methods.
arXiv Detail & Related papers (2024-03-21T13:59:19Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Advancements in Optimization: Adaptive Differential Evolution with
Diversification Strategy [0.0]
The study employs single-objective optimization in a two-dimensional space and runs ADEDS on each of the benchmark functions with multiple iterations.
ADEDS consistently outperforms standard DE for a variety of optimization challenges, including functions with numerous local optima, plate-shaped, valley-shaped, stretched-shaped, and noisy functions.
arXiv Detail & Related papers (2023-10-02T10:05:41Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
Metaheuristics are universal optimization algorithms which should be used for solving difficult problems, unsolvable by classic approaches.
In this paper we aim at constructing novel socio-cognitive metaheuristic based on castes, and apply several versions of this algorithm to optimization of time-delay system model.
arXiv Detail & Related papers (2022-10-23T22:21:10Z) - High-dimensional Bayesian Optimization Algorithm with Recurrent Neural
Network for Disease Control Models in Time Series [1.9371782627708491]
We propose a new high dimensional Bayesian Optimization algorithm combining Recurrent neural networks.
The proposed RNN-BO algorithm can solve the optimal control problems in the lower dimension space.
We also discuss the impacts of different numbers of the RNN layers and training epochs on the trade-off between solution quality and related computational efforts.
arXiv Detail & Related papers (2022-01-01T08:40:17Z) - A novel multiobjective evolutionary algorithm based on decomposition and
multi-reference points strategy [14.102326122777475]
Multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been regarded as a significantly promising approach for solving multiobjective optimization problems (MOPs)
We propose an improved MOEA/D algorithm by virtue of the well-known Pascoletti-Serafini scalarization method and a new strategy of multi-reference points.
arXiv Detail & Related papers (2021-10-27T02:07:08Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.