論文の概要: The influence of coordinated behavior on toxicity
- arxiv url: http://arxiv.org/abs/2310.01283v1
- Date: Mon, 2 Oct 2023 15:35:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-04 21:12:16.786681
- Title: The influence of coordinated behavior on toxicity
- Title(参考訳): 協調行動が毒性に及ぼす影響
- Authors: Edoardo Loru, Matteo Cinelli, Maurizio Tesconi, Walter Quattrociocchi
- Abstract要約: 本研究は,Twitter上でのコーディネート行動(CB)と有毒な会話との関係について考察した。
2019年イギリス総選挙に先立ち、100万人のユーザーがツイートした1100万件のデータセットを用いて、CBを表示するユーザーが通常有害なコンテンツを拡散していることを示す。
さらに、CBによる有害なコンテンツが非CBユーザに与える影響を政治的傾向に基づいて明らかにした。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the intricate landscape of social media genuine content dissemination may
be altered by a number of threats. Coordinated Behavior (CB), defined as
orchestrated efforts by entities to deceive or mislead users about their
identity and intentions, emerges as a tactic to exploit or manipulate online
discourse. This study delves into the relationship between CB and toxic
conversation on Twitter. Using a dataset of 11 million tweets from 1 million
users preceding the 2019 UK General Elections, we show that users displaying CB
typically disseminate less harmful content, irrespective of political
affiliation. However, distinct toxicity patterns emerge among different CB
cohorts. Compared to their non-CB counterparts, CB participants show marginally
elevated toxicity levels only when considering their original posts. We further
show the effects of CB-driven toxic content on non-CB users, gauging its impact
based on political leanings. Our findings suggest a nuanced but statistically
significant influence of CB on digital discourse.
- Abstract(参考訳): ソーシャルメディアの複雑な状況において、本物のコンテンツの拡散は多くの脅威によって変化するかもしれない。
CB(Coordinated Behavior)は、個人がユーザーのアイデンティティや意図を欺いたり誤解させたりするための組織的努力として定義され、オンラインの会話を活用または操作するための戦術として現れる。
この研究は、cbとtwitter上の有害な会話の関係を考察するものだ。
2019年のイギリス総選挙に先立ち、100万人のユーザーの1100万ツイートのデータセットを使用して、cbを表示するユーザーは、政治的提携に関係なく、通常、有害なコンテンツを広めることが示されている。
しかし、異なるcbコホート間で異なる毒性パターンが現れる。
非CB患者と比較して、CB参加者は原位置を考慮すると毒性レベルが極端に上昇している。
さらに、CBによる有害なコンテンツが非CBユーザに与える影響を政治的傾向に基づいて明らかにした。
以上の結果から,CBがデジタル談話に与える影響が示唆された。
関連論文リスト
- Characterizing Online Toxicity During the 2022 Mpox Outbreak: A Computational Analysis of Topical and Network Dynamics [0.9831489366502301]
2022年のムポックスの流行は、当初は「モンキーポックス」と呼ばれていたが、その後、関連するスティグマや社会的懸念を緩和するために改名された。
我々は660万以上のユニークツイートを収集し、コンテキスト、範囲、コンテンツ、話者、意図といった5つの次元から分析しました。
我々は、Twitter上での有害なオンライン談話(46.6%)、病気(46.6%)、健康政策と医療(19.3%)、ホモフォビア(23.9%)、政治など、高レベルのトピックを5つ特定した。
有毒なコンテンツのリツイートが広まっていたのに対して、影響力のあるユーザはリツイートを通じてこの有毒な行為に関わったり、反対したりすることはめったにない。
論文 参考訳(メタデータ) (2024-08-21T19:31:01Z) - Characterization of Political Polarized Users Attacked by Language Toxicity on Twitter [3.0367864044156088]
本研究は,左,右,センター利用者の言語毒性フローを初めて調査することを目的とする。
5億件以上のTwitter投稿が調査された。
その結果、左派ユーザーは右派やセンター派よりもはるかに有毒な回答が得られた。
論文 参考訳(メタデータ) (2024-07-17T10:49:47Z) - Twits, Toxic Tweets, and Tribal Tendencies: Trends in Politically Polarized Posts on Twitter [5.161088104035108]
個人レベルでの毒性と,Twitter/X上でのトピックレベルに寄与するパーシスタンスと感情分極が果たす役割について検討する。
43,151人のTwitter/Xユーザーから8960万のツイートを収集した後、パーティショニングを含むいくつかのアカウントレベルの特徴が、ユーザーが有害コンテンツを投稿する頻度を予測するかを決定する。
論文 参考訳(メタデータ) (2023-07-19T17:24:47Z) - A deep dive into the consistently toxic 1% of Twitter [9.669275987983447]
この調査は、112万のTwitterプロフィールから14年間のツイートと2億2300万以上のツイートをカバーしている。
有害なコンテンツの一貫性の観点から最も極端なプロファイルを選択し、彼らのツイートテキストと、彼らが共有したドメイン、ハッシュタグ、URLを調べました。
その結果、これらのプロファイルはハッシュタグ、URL、ドメインの多様性の低い狭いテーマに保たれており、数学的に互いに似ており、ボットのような振る舞いの可能性が高いことがわかった。
論文 参考訳(メタデータ) (2022-02-16T04:21:48Z) - Toxicity Detection can be Sensitive to the Conversational Context [64.28043776806213]
2種類の毒性ラベルを持つ1万のポストのデータセットを構築し、公開します。
また,新たな課題である文脈感度推定を導入し,コンテキストも考慮された場合,毒性が変化すると認識された投稿を識別することを目的とした。
論文 参考訳(メタデータ) (2021-11-19T13:57:26Z) - Annotators with Attitudes: How Annotator Beliefs And Identities Bias
Toxic Language Detection [75.54119209776894]
本研究では,アノテータのアイデンティティ(誰)と信念(なぜ)が有害な言語アノテーションに与える影響について検討する。
我々は、アンチブラック言語、アフリカ系アメリカ人の英語方言、俗語という3つの特徴を持つポストを考察する。
以上の結果から,アノテータのアイデンティティと信念と毒性評価の相関が強く示唆された。
論文 参考訳(メタデータ) (2021-11-15T18:58:20Z) - Mitigating Biases in Toxic Language Detection through Invariant
Rationalization [70.36701068616367]
性別、人種、方言などの属性に対するバイアスは、毒性検出のためのほとんどのトレーニングデータセットに存在する。
本稿では,論理生成器と予測器から構成されるゲーム理論フレームワークである不変合理化(InvRat)を用いて,特定の構文パターンの素早い相関を除外することを提案する。
本手法は, 語彙属性と方言属性の両方において, 従来のデバイアス法よりも低い偽陽性率を示す。
論文 参考訳(メタデータ) (2021-06-14T08:49:52Z) - News consumption and social media regulations policy [70.31753171707005]
我々は、ニュース消費とコンテンツ規制の間の相互作用を評価するために、反対のモデレーション手法であるTwitterとGabを強制した2つのソーシャルメディアを分析した。
以上の結果から,Twitterが追求するモデレーションの存在は,疑わしいコンテンツを著しく減少させることがわかった。
Gabに対する明確な規制の欠如は、ユーザが両方のタイプのコンテンツを扱う傾向を生じさせ、ディスカウント/エンドレスメントの振る舞いを考慮に入れた疑わしいコンテンツに対してわずかに好みを示す。
論文 参考訳(メタデータ) (2021-06-07T19:26:32Z) - Designing Toxic Content Classification for a Diversity of Perspectives [15.466547856660803]
我々は17,280人の参加者を対象に,有毒なコンテンツを構成するものに対するユーザの期待が,人口動態,信念,個人的経験によってどのように異なるかを調査した。
歴史的に嫌がらせのリスクがあるグループは、Reddit、Twitter、あるいは4chanから無作為なコメントを有害であると警告する傾向にある。
JigsawのパースペクティブAPIのような、現在の一大毒性分類アルゴリズムは、パーソナライズされたモデルチューニングによって、平均86%の精度で改善できることを示す。
論文 参考訳(メタデータ) (2021-06-04T16:45:15Z) - Causal Understanding of Fake News Dissemination on Social Media [50.4854427067898]
我々は、ユーザーがフェイクニュースを共有するのに、ユーザー属性が何をもたらすかを理解することが重要だと論じている。
偽ニュース拡散において、共同創設者は、本質的にユーザー属性やオンライン活動に関連する偽ニュース共有行動によって特徴づけられる。
本稿では,偽ニュース拡散における選択バイアスを軽減するための原則的アプローチを提案する。
論文 参考訳(メタデータ) (2020-10-20T19:37:04Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
本研究では,4つのソーシャルメディアプラットフォーム上で100万ユーザが生成した100万個のコンテンツに対して,エコーチャンバーの操作的定義を導入し,大規模な比較分析を行う。
議論の的になっているトピックについてユーザの傾きを推測し、異なる特徴を分析してインタラクションネットワークを再構築する。
我々は、Facebookのようなニュースフィードアルゴリズムを実装するプラットフォームが、エコーチャンバの出現を招きかねないという仮説を支持する。
論文 参考訳(メタデータ) (2020-04-20T20:00:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。