論文の概要: ChoiceMates: Supporting Unfamiliar Online Decision-Making with
Multi-Agent Conversational Interactions
- arxiv url: http://arxiv.org/abs/2310.01331v1
- Date: Mon, 2 Oct 2023 16:49:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-04 20:51:28.652478
- Title: ChoiceMates: Supporting Unfamiliar Online Decision-Making with
Multi-Agent Conversational Interactions
- Title(参考訳): choicemates:マルチエージェント対話による不慣れなオンライン意思決定のサポート
- Authors: Jeongeon Park, Bryan Min, Xiaojuan Ma, Juho Kim
- Abstract要約: 提案するChoiceMatesは,LLMエージェントの動的セットとの対話を可能にするシステムである。
エージェントは、意見のあるペルソナとして、柔軟に会話に参加し、応答を提供するだけでなく、各エージェントの好みを引き出すために互いに会話する。
ChoiceMatesを従来のWeb検索とシングルエージェントと比較した結果,ChoiceMatesはより信頼性の高いWebと比較して,発見,潜水,情報管理に有用であることが判明した。
- 参考スコア(独自算出の注目度): 58.71970923420007
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unfamiliar decisions -- decisions where people lack adequate domain knowledge
or expertise -- specifically increase the complexity and uncertainty of the
process of searching for, understanding, and making decisions with online
information. Through our formative study (n=14), we observed users' challenges
in accessing diverse perspectives, identifying relevant information, and
deciding the right moment to make the final decision. We present ChoiceMates, a
system that enables conversations with a dynamic set of LLM-powered agents for
a holistic domain understanding and efficient discovery and management of
information to make decisions. Agents, as opinionated personas, flexibly join
the conversation, not only providing responses but also conversing among
themselves to elicit each agent's preferences. Our between-subjects study
(n=36) comparing ChoiceMates to conventional web search and single-agent showed
that ChoiceMates was more helpful in discovering, diving deeper, and managing
information compared to Web with higher confidence. We also describe how
participants utilized multi-agent conversations in their decision-making
process.
- Abstract(参考訳): 人々が適切なドメイン知識や専門知識を欠いた決定は、特にオンライン情報で検索し、理解し、決定するプロセスの複雑さと不確実性を高めます。
形成的調査(n=14)を通じて,多様な視点にアクセスし,関連情報を特定し,最終決定を行うための適切なタイミングを決定する上でのユーザの課題を観察した。
提案するChoiceMatesは,汎用的なドメイン理解と情報発見・管理を行うための,LLMエージェントの動的セットとの対話を可能にするシステムである。
エージェントは、意見のあるペルソナとして、柔軟に会話に参加し、応答を提供するだけでなく、各エージェントの好みを引き出すために会話する。
ChoiceMatesを従来のWeb検索やシングルエージェントと比較した結果,ChoiceMatesはより信頼性の高いWebと比較して,より深い情報発見,潜入,情報管理に有用であることが判明した。
また,マルチエージェント会話を意思決定プロセスでどのように活用するかについても述べる。
関連論文リスト
- Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
本稿では,高速なタスク分解とアロケーションプロセスを活用するマルチエージェントシステムにおけるエージェント指向計画のための新しいフレームワークを提案する。
提案フレームワークにフィードバックループを組み込んで,そのような問題解決プロセスの有効性と堅牢性をさらに向上させる。
論文 参考訳(メタデータ) (2024-10-03T04:07:51Z) - A Learnable Agent Collaboration Network Framework for Personalized Multimodal AI Search Engine [14.123823081267336]
本稿では,Agent Collaboration Network (ACN) と呼ばれる新しいAI検索エンジンフレームワークを提案する。
ACNフレームワークは、複数の専門エージェントが協力して作業し、それぞれがアカウントマネージャ、ソリューションストラテジスト、情報マネージャ、コンテンツクリエータといった異なる役割を担っている。
ACNの特長は、エージェント間のオンライン相乗的調整をサポートする反射フォワード最適化法(RFO)の導入である。
論文 参考訳(メタデータ) (2024-09-01T07:01:22Z) - ADESSE: Advice Explanations in Complex Repeated Decision-Making Environments [14.105935964906976]
この研究は、インテリジェントなエージェントが人間の意思決定者にアドバイスを提供するような問題設定について考察する。
我々は,人的信頼と意思決定を改善するためのアドバイザーエージェントの説明を生成するために,ADESSEというアプローチを開発した。
論文 参考訳(メタデータ) (2024-05-31T08:59:20Z) - Online Decision Mediation [72.80902932543474]
意思決定支援アシスタントを学習し、(好奇心)専門家の行動と(不完全)人間の行動の仲介役として機能することを検討する。
臨床診断では、完全に自律的な機械行動は倫理的余裕を超えることが多い。
論文 参考訳(メタデータ) (2023-10-28T05:59:43Z) - AVIS: Autonomous Visual Information Seeking with Large Language Model
Agent [123.75169211547149]
本稿では,視覚的質問応答フレームワークAVISを提案する。
本手法は,LLM(Large Language Model)を利用して外部ツールの利用を動的に強化する。
AVIS は Infoseek や OK-VQA などの知識集約型視覚質問応答ベンチマークの最先端結果を達成する。
論文 参考訳(メタデータ) (2023-06-13T20:50:22Z) - Decision-Oriented Dialogue for Human-AI Collaboration [62.367222979251444]
そこでは,大規模言語モデル(LM)のようなAIアシスタントが,自然言語を介して複数の人間と協調して複雑な意思決定を行うための,意思決定指向対話と呼ばれるタスクのクラスについて述べる。
日常的な意思決定に直面する3つの領域を定式化し,(1)レビュアーの会議論文への課題の選択,(2)都市における複数段階の旅程の計画,(3)友人集団の旅行計画の交渉を行う。
各タスクに対して、エージェントが到達した最終決定の質に基づいて報酬を受け取る対話環境を構築する。
論文 参考訳(メタデータ) (2023-05-31T17:50:02Z) - Toward Policy Explanations for Multi-Agent Reinforcement Learning [18.33682005623418]
MARLのための2種類のポリシー記述を生成するための新しい手法を提案する。
3つのMARL領域の実験結果から,提案手法のスケーラビリティが実証された。
ユーザスタディでは、生成された説明がユーザパフォーマンスを著しく改善し、ユーザ満足度などの指標に対する主観的評価が向上することを示した。
論文 参考訳(メタデータ) (2022-04-26T20:07:08Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
エージェントが意思決定を行う方法の解釈可能な表現を開発する方法を示す。
一連の軌跡に基づく意思決定プロセスを理解することにより,このオンライン学習問題に対して,政策推論問題を逆問題とみなした。
本稿では、エージェントがそれらを更新するプロセスと並行して、その影響を遡及的に推定する実用的なアルゴリズムを提案する。
UNOSの臓器提供受諾決定の分析に応用することで、我々のアプローチは意思決定プロセスを管理する要因や時間とともにどのように変化するかに、貴重な洞察をもたらすことができることを実証する。
論文 参考訳(メタデータ) (2022-03-14T17:40:42Z) - Tradeoff-Focused Contrastive Explanation for MDP Planning [7.929642367937801]
実際の計画の応用では、計画エージェントの決定は、競合する目標間の複雑なトレードオフを伴う可能性がある。
エンドユーザは、目的値に基づいて、エージェントが特定の計画ソリューションを決定する理由を理解することは困難である。
本稿では,マルチオブジェクトのMDP計画エージェントが,そのトレードオフの合理性を伝達する手法として,その意思決定を説明できるアプローチを提案する。
論文 参考訳(メタデータ) (2020-04-27T17:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。