論文の概要: Tradeoff-Focused Contrastive Explanation for MDP Planning
- arxiv url: http://arxiv.org/abs/2004.12960v2
- Date: Sun, 2 Aug 2020 16:07:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 05:48:27.593732
- Title: Tradeoff-Focused Contrastive Explanation for MDP Planning
- Title(参考訳): MDP計画のためのトレードオフ型コントラスト記述
- Authors: Roykrong Sukkerd, Reid Simmons, and David Garlan
- Abstract要約: 実際の計画の応用では、計画エージェントの決定は、競合する目標間の複雑なトレードオフを伴う可能性がある。
エンドユーザは、目的値に基づいて、エージェントが特定の計画ソリューションを決定する理由を理解することは困難である。
本稿では,マルチオブジェクトのMDP計画エージェントが,そのトレードオフの合理性を伝達する手法として,その意思決定を説明できるアプローチを提案する。
- 参考スコア(独自算出の注目度): 7.929642367937801
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: End-users' trust in automated agents is important as automated
decision-making and planning is increasingly used in many aspects of people's
lives. In real-world applications of planning, multiple optimization objectives
are often involved. Thus, planning agents' decisions can involve complex
tradeoffs among competing objectives. It can be difficult for the end-users to
understand why an agent decides on a particular planning solution on the basis
of its objective values. As a result, the users may not know whether the agent
is making the right decisions, and may lack trust in it. In this work, we
contribute an approach, based on contrastive explanation, that enables a
multi-objective MDP planning agent to explain its decisions in a way that
communicates its tradeoff rationale in terms of the domain-level concepts. We
conduct a human subjects experiment to evaluate the effectiveness of our
explanation approach in a mobile robot navigation domain. The results show that
our approach significantly improves the users' understanding, and confidence in
their understanding, of the tradeoff rationale of the planning agent.
- Abstract(参考訳): エンドユーザーによる自動エージェントへの信頼は、自動意思決定と計画が人々の生活の多くの側面でますます利用されているため重要である。
実際の計画の応用では、複数の最適化目標がしばしば関与する。
したがって、プランニングエージェントの決定は、競合する目的間の複雑なトレードオフを伴う可能性がある。
エンドユーザは、目的値に基づいて、エージェントが特定の計画ソリューションを決定する理由を理解することは困難である。
結果として、ユーザーはエージェントが正しい決定をしているかどうかを知らず、信頼を欠いている可能性がある。
本研究では,マルチオブジェクト型MDP計画エージェントが,ドメインレベルの概念の観点からトレードオフの合理性を伝達する手段として,その決定を説明できるアプローチを,対照的な説明に基づいて提案する。
我々は,移動ロボットナビゲーション領域における説明手法の有効性を評価するために,人体実験を行う。
その結果,提案手法は,計画エージェントのトレードオフ合理性に対するユーザの理解,信頼度を著しく向上させることがわかった。
関連論文リスト
- Towards Objective and Unbiased Decision Assessments with LLM-Enhanced Hierarchical Attention Networks [6.520709313101523]
本研究では,人的専門家による高い意思決定過程における認知バイアスの識別について検討する。
人間の判断を超越したバイアス対応AI拡張ワークフローを提案する。
実験では,提案モデルとエージェントワークフローの両方が,人間の判断と代替モデルの両方において有意に改善されている。
論文 参考訳(メタデータ) (2024-11-13T10:42:11Z) - Interactive Speculative Planning: Enhance Agent Efficiency through Co-design of System and User Interface [38.76937539085164]
本稿では,人間中心の効率的なエージェント計画手法である対話型投機計画を提案する。
我々は,システム設計と人間-AIインタラクションの両面からエージェント計画の効率化を目指す。
論文 参考訳(メタデータ) (2024-09-30T16:52:51Z) - Ask-before-Plan: Proactive Language Agents for Real-World Planning [68.08024918064503]
プロアクティブエージェントプランニングでは、ユーザエージェントの会話とエージェント環境のインタラクションに基づいて、言語エージェントが明確化のニーズを予測する必要がある。
本稿では,明確化,実行,計画の3つのエージェントからなる新しいマルチエージェントフレームワーク,Clarification-Execution-Planning(textttCEP)を提案する。
論文 参考訳(メタデータ) (2024-06-18T14:07:28Z) - ADESSE: Advice Explanations in Complex Repeated Decision-Making Environments [14.105935964906976]
この研究は、インテリジェントなエージェントが人間の意思決定者にアドバイスを提供するような問題設定について考察する。
我々は,人的信頼と意思決定を改善するためのアドバイザーエージェントの説明を生成するために,ADESSEというアプローチを開発した。
論文 参考訳(メタデータ) (2024-05-31T08:59:20Z) - Tell Me More! Towards Implicit User Intention Understanding of Language
Model Driven Agents [110.25679611755962]
現在の言語モデル駆動エージェントは、しばしば効果的なユーザ参加のメカニズムを欠いている。
Intention-in-Interaction (IN3) は明示的なクエリを通してユーザの暗黙の意図を検査するための新しいベンチマークである。
私たちは、タスクの曖昧さを積極的に評価し、ユーザの意図を問う強力なモデルであるMistral-Interactを経験的に訓練し、それらを実行可能な目標へと洗練させます。
論文 参考訳(メタデータ) (2024-02-14T14:36:30Z) - Rational Decision-Making Agent with Internalized Utility Judgment [91.80700126895927]
大規模言語モデル(LLM)は目覚ましい進歩を示し、従来のNLPアプリケーションを超えて複雑な多段階決定タスクを実行できるエージェントにLLMを開発するための重要な努力を惹きつけている。
本稿では,RadAgentを提案する。このRadAgentは,経験探索とユーティリティ学習を含む反復的なフレームワークを通じて,合理性の発展を促進する。
ToolBenchデータセットの実験結果は、RadAgentがベースラインよりも優れていることを示している。
論文 参考訳(メタデータ) (2023-08-24T03:11:45Z) - Formalizing the Problem of Side Effect Regularization [81.97441214404247]
本稿では,補助ゲームフレームワークを用いたサイドエフェクト正規化のための公式な基準を提案する。
これらのゲームでは、エージェントは部分的に観測可能なマルコフ決定プロセスを解決する。
このPOMDPは、エージェントが将来的なタスクをこなす能力と、プロキシ報酬を交換することで解決されることを示す。
論文 参考訳(メタデータ) (2022-06-23T16:36:13Z) - Reinforcement Learning with a Terminator [80.34572413850186]
我々は, TerMDP のパラメータを学習し, 推定問題の構造を活用し, 状態ワイドな信頼境界を提供する。
我々はこれらを用いて証明可能な効率のよいアルゴリズムを構築し、終端を考慮し、その後悔を抑える。
論文 参考訳(メタデータ) (2022-05-30T18:40:28Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
エージェントが意思決定を行う方法の解釈可能な表現を開発する方法を示す。
一連の軌跡に基づく意思決定プロセスを理解することにより,このオンライン学習問題に対して,政策推論問題を逆問題とみなした。
本稿では、エージェントがそれらを更新するプロセスと並行して、その影響を遡及的に推定する実用的なアルゴリズムを提案する。
UNOSの臓器提供受諾決定の分析に応用することで、我々のアプローチは意思決定プロセスを管理する要因や時間とともにどのように変化するかに、貴重な洞察をもたらすことができることを実証する。
論文 参考訳(メタデータ) (2022-03-14T17:40:42Z) - Efficient Multi-agent Epistemic Planning: Teaching Planners About Nested
Belief [27.524600740450126]
我々は, 一つのエージェントの観点から, ネストされた信念, 非同質なエージェント, 共同表現観察, あるいはあるエージェントが別のエージェントであるかのように推論する能力を含む, 目標と行動の可能性を秘めている。
提案手法は,複数エージェントのネストされた信念を含む計画課題に,十分に確立された自動計画分野を適用するための重要なステップである。
論文 参考訳(メタデータ) (2021-10-06T03:24:01Z) - Comprehensive Multi-Agent Epistemic Planning [0.0]
この写本は、MEP(Multi-Adnt Epistemic Planning)として知られる特殊な計画に重点を置いている。
EPは、エージェントが知識/信任状態の空間で理由付けを行い、開始状態から望ましい状態に到達する計画を見つけようとする自動計画環境を指す。
その一般的な形であるMEP問題(英語版)は、世界の状態とエージェント間の情報の流れの両方を推論する必要がある複数のエージェントを含んでいる。
論文 参考訳(メタデータ) (2021-09-17T01:50:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。