Designing User-Centric Behavioral Interventions to Prevent Dysglycemia with Novel Counterfactual Explanations
- URL: http://arxiv.org/abs/2310.01684v2
- Date: Fri, 01 Nov 2024 15:46:35 GMT
- Title: Designing User-Centric Behavioral Interventions to Prevent Dysglycemia with Novel Counterfactual Explanations
- Authors: Asiful Arefeen, Hassan Ghasemzadeh,
- Abstract summary: ExAct is a novel framework for generating counterfactual explanations for chronic disease prevention and management.
It is evaluated extensively using four real-world datasets and external simulators.
- Score: 8.517406772939292
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Monitoring unexpected health events and taking actionable measures to avert them beforehand is central to maintaining health and preventing disease. Therefore, a tool capable of predicting adverse health events and offering users actionable feedback about how to make changes in their diet, exercise, and medication to prevent abnormal health events could have significant societal impacts. Counterfactual explanations can provide insights into why a model made a particular prediction by generating hypothetical instances that are similar to the original input but lead to a different prediction outcome. Therefore, counterfactuals can be viewed as a means to design AI-driven health interventions to not only predict but also prevent adverse health outcomes such as blood glucose spikes, diabetes, and heart disease. In this paper, we design \textit{\textbf{ExAct}}, a novel model-agnostic framework for generating counterfactual explanations for chronic disease prevention and management. Leveraging insights from adversarial learning, ExAct characterizes the decision boundary for high-dimensional data and performs a grid search to generate actionable interventions. ExAct is unique in integrating prior knowledge about user preferences of feasible explanations into the process of counterfactual generation. ExAct is evaluated extensively using four real-world datasets and external simulators. With $82.8\%$ average validity in the simulation-aided validation, ExAct surpasses the state-of-the-art techniques for generating counterfactual explanations by at least $10\%$. Besides, counterfactuals from ExAct exhibit at least $6.6\%$ improved proximity compared to previous research.
Related papers
- Causal Lifting of Neural Representations: Zero-Shot Generalization for Causal Inferences [56.23412698865433]
We focus on causal inferences on a target experiment with unlabeled factual outcomes, retrieved by a predictive model fine-tuned on a labeled similar experiment.
First, we show that factual outcome estimation via Empirical Risk Minimization (ERM) may fail to yield valid causal inferences on the target population.
We propose Deconfounded Empirical Risk Minimization (DERM), a new simple learning procedure minimizing the risk over a fictitious target population.
arXiv Detail & Related papers (2025-02-10T10:52:17Z) - SurvAttack: Black-Box Attack On Survival Models through Ontology-Informed EHR Perturbation [9.500873129276531]
We introduce SurvAttack, a novel black-box adversarial attack framework for survival analysis models.
We specifically develop an algorithm to manipulate medical codes with various adversarial actions throughout a patient's medical history.
The proposed adversarial EHR perturbation algorithm is then used in an efficient SA-specific strategy to attack a survival model.
arXiv Detail & Related papers (2024-12-24T23:35:42Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Policy Optimization for Personalized Interventions in Behavioral Health [8.10897203067601]
Behavioral health interventions, delivered through digital platforms, have the potential to significantly improve health outcomes.
We study the problem of optimizing personalized interventions for patients to maximize a long-term outcome.
We present a new approach for this problem that we dub DecompPI, which decomposes the state space for a system of patients to the individual level.
arXiv Detail & Related papers (2023-03-21T21:42:03Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
We will assess the infrastructure required to monitor the outputs of a machine learning algorithm.
We will present two scenarios with examples of monitoring and updates of models.
arXiv Detail & Related papers (2023-03-02T17:27:45Z) - Foresight -- Deep Generative Modelling of Patient Timelines using
Electronic Health Records [46.024501445093755]
Temporal modelling of medical history can be used to forecast and simulate future events, estimate risk, suggest alternative diagnoses or forecast complications.
We present Foresight, a novel GPT3-based pipeline that uses NER+L tools (i.e. MedCAT) to convert document text into structured, coded concepts.
arXiv Detail & Related papers (2022-12-13T19:06:00Z) - Monitoring machine learning (ML)-based risk prediction algorithms in the
presence of confounding medical interventions [4.893345190925178]
Performance monitoring of machine learning (ML)-based risk prediction models in healthcare is complicated by the issue of confounding medical interventions (CMI)
A simple approach is to ignore CMI and monitor only the untreated patients, whose outcomes remain unaltered.
We show that valid inference is still possible if one monitors conditional performance and if either conditional exchangeability or time-constant selection bias hold.
arXiv Detail & Related papers (2022-11-17T18:54:34Z) - Forecasting Patient Flows with Pandemic Induced Concept Drift using
Explainable Machine Learning [0.0]
This study investigates how a suite of novel quasi-real-time variables can improve the forecasting models of patient flows.
The prevailing COVID-19 Alert Level feature together with Google search terms and pedestrian traffic were effective at producing generalisable forecasts.
arXiv Detail & Related papers (2022-11-01T20:42:26Z) - Detecting Cross-Modal Inconsistency to Defend Against Neural Fake News [57.9843300852526]
We introduce the more realistic and challenging task of defending against machine-generated news that also includes images and captions.
To identify the possible weaknesses that adversaries can exploit, we create a NeuralNews dataset composed of 4 different types of generated articles.
In addition to the valuable insights gleaned from our user study experiments, we provide a relatively effective approach based on detecting visual-semantic inconsistencies.
arXiv Detail & Related papers (2020-09-16T14:13:15Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.