Monitoring machine learning (ML)-based risk prediction algorithms in the
presence of confounding medical interventions
- URL: http://arxiv.org/abs/2211.09781v2
- Date: Fri, 14 Apr 2023 17:05:02 GMT
- Title: Monitoring machine learning (ML)-based risk prediction algorithms in the
presence of confounding medical interventions
- Authors: Jean Feng, Alexej Gossmann, Gene Pennello, Nicholas Petrick, Berkman
Sahiner, Romain Pirracchio
- Abstract summary: Performance monitoring of machine learning (ML)-based risk prediction models in healthcare is complicated by the issue of confounding medical interventions (CMI)
A simple approach is to ignore CMI and monitor only the untreated patients, whose outcomes remain unaltered.
We show that valid inference is still possible if one monitors conditional performance and if either conditional exchangeability or time-constant selection bias hold.
- Score: 4.893345190925178
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Performance monitoring of machine learning (ML)-based risk prediction models
in healthcare is complicated by the issue of confounding medical interventions
(CMI): when an algorithm predicts a patient to be at high risk for an adverse
event, clinicians are more likely to administer prophylactic treatment and
alter the very target that the algorithm aims to predict. A simple approach is
to ignore CMI and monitor only the untreated patients, whose outcomes remain
unaltered. In general, ignoring CMI may inflate Type I error because (i)
untreated patients disproportionally represent those with low predicted risk
and (ii) evolution in both the model and clinician trust in the model can
induce complex dependencies that violate standard assumptions. Nevertheless, we
show that valid inference is still possible if one monitors conditional
performance and if either conditional exchangeability or time-constant
selection bias hold. Specifically, we develop a new score-based cumulative sum
(CUSUM) monitoring procedure with dynamic control limits. Through simulations,
we demonstrate the benefits of combining model updating with monitoring and
investigate how over-trust in a prediction model may delay detection of
performance deterioration. Finally, we illustrate how these monitoring methods
can be used to detect calibration decay of an ML-based risk calculator for
postoperative nausea and vomiting during the COVID-19 pandemic.
Related papers
- SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Neural parameter calibration and uncertainty quantification for epidemic
forecasting [0.0]
We apply a novel and powerful computational method to the problem of learning probability densities on contagion parameters.
Using a neural network, we calibrate an ODE model to data of the spread of COVID-19 in Berlin in 2020.
We show convergence of our method to the true posterior on a simplified SIR model of epidemics, and also demonstrate our method's learning capabilities on a reduced dataset.
arXiv Detail & Related papers (2023-12-05T21:34:59Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
We will assess the infrastructure required to monitor the outputs of a machine learning algorithm.
We will present two scenarios with examples of monitoring and updates of models.
arXiv Detail & Related papers (2023-03-02T17:27:45Z) - Boosting the interpretability of clinical risk scores with intervention
predictions [59.22442473992704]
We propose a joint model of intervention policy and adverse event risk as a means to explicitly communicate the model's assumptions about future interventions.
We show how combining typical risk scores, such as the likelihood of mortality, with future intervention probability scores leads to more interpretable clinical predictions.
arXiv Detail & Related papers (2022-07-06T19:49:42Z) - Improving Trustworthiness of AI Disease Severity Rating in Medical
Imaging with Ordinal Conformal Prediction Sets [0.7734726150561088]
A lack of statistically rigorous uncertainty quantification is a significant factor undermining trust in AI results.
Recent developments in distribution-free uncertainty quantification present practical solutions for these issues.
We demonstrate a technique for forming ordinal prediction sets that are guaranteed to contain the correct stenosis severity.
arXiv Detail & Related papers (2022-07-05T18:01:20Z) - Modeling Disagreement in Automatic Data Labelling for Semi-Supervised
Learning in Clinical Natural Language Processing [2.016042047576802]
We investigate the quality of uncertainty estimates from a range of current state-of-the-art predictive models applied to the problem of observation detection in radiology reports.
arXiv Detail & Related papers (2022-05-29T20:20:49Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Real-time Prediction for Mechanical Ventilation in COVID-19 Patients
using A Multi-task Gaussian Process Multi-objective Self-attention Network [9.287068570192057]
We propose a robust in-time predictor for in-hospital COVID-19 patient's probability of requiring mechanical ventilation.
A challenge in the risk prediction for COVID-19 patients lies in the great variability and irregular sampling of patient's vitals and labs observed in the clinical setting.
We frame the prediction task into a multi-objective learning framework, and the risk scores at all time points are optimized altogether.
arXiv Detail & Related papers (2021-02-01T20:35:22Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - Bayesian Modelling in Practice: Using Uncertainty to Improve Trustworthiness in Medical Applications [2.446672595462589]
The Intensive Care Unit (ICU) is a hospital department where machine learning has the potential to provide valuable assistance in clinical decision making.
In practice, uncertain predictions should be presented to doctors with extra care in order to prevent potentially catastrophic treatment decisions.
We show how Bayesian modelling and the predictive uncertainty that it provides can be used to mitigate risk of misguided prediction.
arXiv Detail & Related papers (2019-06-20T13:51:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.