Evaluation of Tropical Cyclone Track and Intensity Forecasts from Artificial Intelligence Weather Prediction (AIWP) Models
- URL: http://arxiv.org/abs/2409.06735v1
- Date: Sun, 8 Sep 2024 22:58:46 GMT
- Title: Evaluation of Tropical Cyclone Track and Intensity Forecasts from Artificial Intelligence Weather Prediction (AIWP) Models
- Authors: Mark DeMaria, James L. Franklin, Galina Chirokova, Jacob Radford, Robert DeMaria, Kate D. Musgrave, Imme Ebert-Uphoff,
- Abstract summary: Four open-source AIWP models are considered (FourCastNetv1, FourCastNetv2-small, GraphCast-operational and Pangu-Weather)
The contribution of the AIWP models to the NHC model consensus was also evaluated.
Despite substantial negative intensity biases, the AIWP models have a neutral impact on the intensity consensus.
- Score: 0.6282171844772422
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In just the past few years multiple data-driven Artificial Intelligence Weather Prediction (AIWP) models have been developed, with new versions appearing almost monthly. Given this rapid development, the applicability of these models to operational forecasting has yet to be adequately explored and documented. To assess their utility for operational tropical cyclone (TC) forecasting, the NHC verification procedure is used to evaluate seven-day track and intensity predictions for northern hemisphere TCs from May-November 2023. Four open-source AIWP models are considered (FourCastNetv1, FourCastNetv2-small, GraphCast-operational and Pangu-Weather). The AIWP track forecast errors and detection rates are comparable to those from the best-performing operational forecast models. However, the AIWP intensity forecast errors are larger than those of even the simplest intensity forecasts based on climatology and persistence. The AIWP models almost always reduce the TC intensity, especially within the first 24 h of the forecast, resulting in a substantial low bias. The contribution of the AIWP models to the NHC model consensus was also evaluated. The consensus track errors are reduced by up to 11% at the longer time periods. The five-day NHC official track forecasts have improved by about 2% per year since 2001, so this represents more than a five-year gain in accuracy. Despite substantial negative intensity biases, the AIWP models have a neutral impact on the intensity consensus. These results show that the current formulation of the AIWP models have promise for operational TC track forecasts, but improved bias corrections or model reformulations will be needed for accurate intensity forecasts.
Related papers
- Machine learning models for daily rainfall forecasting in Northern Tropical Africa using tropical wave predictors [0.0]
Numerical weather prediction (NWP) models often underperform compared to simpler climatology-based precipitation forecasts in northern tropical Africa.
This study uses two machine-learning models--gamma regression and a convolutional neural network (CNN)--trained on tropical waves (TWs) to predict daily rainfall during the July-September monsoon season.
arXiv Detail & Related papers (2024-08-29T08:36:22Z) - Lightning-Fast Convective Outlooks: Predicting Severe Convective Environments with Global AI-based Weather Models [0.08271752505511926]
Severe convective storms are among the most dangerous weather phenomena and accurate forecasts mitigate their impacts.
Recently released suite of AI-based weather models produces medium-range forecasts within seconds.
We assess the forecast skill of three top-performing AI-models for convective parameters against reanalysis and ECMWF's operational numerical weather prediction model IFS.
arXiv Detail & Related papers (2024-06-13T07:46:03Z) - Validating Deep-Learning Weather Forecast Models on Recent High-Impact Extreme Events [0.1747623282473278]
We compare weather prediction models and ECMWF's high-resolution forecast (HRES) system in three case studies.
We find evidence that machine learning weather prediction models can achieve similar accuracy to HRES on record-shattering events.
However, extrapolating to extreme conditions may impact machine learning models more severely than HRES.
arXiv Detail & Related papers (2024-04-26T18:18:25Z) - Uncertainty quantification for data-driven weather models [0.0]
We study and compare uncertainty quantification methods to generate probabilistic weather forecasts from a state-of-the-art deterministic data-driven weather model, Pangu-Weather.
Specifically, we compare approaches for quantifying forecast uncertainty based on generating ensemble forecasts via perturbations to the initial conditions.
In a case study on medium-range forecasts of selected weather variables over Europe, the probabilistic forecasts obtained by using the Pangu-Weather model in concert with uncertainty quantification methods show promising results.
arXiv Detail & Related papers (2024-03-20T10:07:51Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Attention-Based Ensemble Pooling for Time Series Forecasting [55.2480439325792]
We propose a method for pooling that performs a weighted average over candidate model forecasts.
We test this method on two time-series forecasting problems: multi-step forecasting of the dynamics of the non-stationary Lorenz 63 equation, and one-step forecasting of the weekly incident deaths due to COVID-19.
arXiv Detail & Related papers (2023-10-24T22:59:56Z) - Beyond S-curves: Recurrent Neural Networks for Technology Forecasting [60.82125150951035]
We develop an autencoder approach that employs recent advances in machine learning and time series forecasting.
S-curves forecasts largely exhibit a mean average percentage error (MAPE) comparable to a simple ARIMA baseline.
Our autoencoder approach improves the MAPE by 13.5% on average over the second-best result.
arXiv Detail & Related papers (2022-11-28T14:16:22Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.