論文の概要: Exploring Counterfactual Alignment Loss towards Human-centered AI
- arxiv url: http://arxiv.org/abs/2310.01766v1
- Date: Tue, 3 Oct 2023 03:20:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-04 17:44:26.434951
- Title: Exploring Counterfactual Alignment Loss towards Human-centered AI
- Title(参考訳): 人間中心型AIに向けた対物アライメント損失の探索
- Authors: Mingzhou Liu, Xinwei Sun, Ching-Wen Lee, Yu Qiao, Yizhou Wang
- Abstract要約: 最近の説明誘導型学習手法は、人手による注釈付き画像領域への勾配に基づく注意マップの整列を図っている。
対物生成に基づく新しい人間中心型フレームワークを提案する。
肺がん診断データセットにおける本手法の有効性を実証し,ヒトへの忠実な対応を示す。
- 参考スコア(独自算出の注目度): 35.3493980628004
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks have demonstrated impressive accuracy in supervised
learning tasks. However, their lack of transparency makes it hard for humans to
trust their results, especially in safe-critic domains such as healthcare. To
address this issue, recent explanation-guided learning approaches proposed to
align the gradient-based attention map to image regions annotated by human
experts, thereby obtaining an intrinsically human-centered model. However, the
attention map these methods are based on may fail to causally attribute the
model predictions, thus compromising their validity for alignment. To address
this issue, we propose a novel human-centered framework based on counterfactual
generation. In particular, we utilize the counterfactual generation's ability
for causal attribution to introduce a novel loss called the CounterFactual
Alignment (CF-Align) loss. This loss guarantees that the features attributed by
the counterfactual generation for the classifier align with the human
annotations. To optimize the proposed loss that entails a counterfactual
generation with an implicit function form, we leverage the implicit function
theorem for backpropagation. Our method is architecture-agnostic and, therefore
can be applied to any neural network. We demonstrate the effectiveness of our
method on a lung cancer diagnosis dataset, showcasing faithful alignment to
humans.
- Abstract(参考訳): 深層ニューラルネットワークは教師付き学習タスクにおいて驚くべき精度を示している。
しかしながら、透明性の欠如は、特に医療のような安全な犯罪領域において、人間が結果を信頼することを難しくする。
この問題に対処するために、近年の説明誘導学習手法は、人間の専門家が注釈付けした画像領域に勾配に基づく注意マップを合わせることによって、本質的な人間中心モデルを得る。
しかし、これらの手法に基づく注意マップは、モデル予測を因果的属性付けに失敗し、アライメントの妥当性を損なう可能性がある。
この問題に対処するために,対策生成に基づく新しい人間中心型フレームワークを提案する。
特に, 因果属性に対する反事実生成の能力を利用して, CF-Align(CounterFactual Alignment)損失という新たな損失を導入する。
この損失は、分類器の反ファクト生成による特徴が人間のアノテーションと一致していることを保証する。
暗黙的関数形式を持つ反事実生成を伴う提案損失を最適化するために,暗黙的関数定理をバックプロパゲーションに活用する。
本手法はアーキテクチャに依存せず,任意のニューラルネットワークに適用可能である。
肺癌診断データセットにおける本手法の有効性を実証し,ヒトに対する忠実な対応を示す。
関連論文リスト
- Wasserstein distributional robustness of neural networks [9.79503506460041]
ディープニューラルネットワークは敵攻撃(AA)に弱いことが知られている
画像認識タスクでは、元の小さな摂動によって画像が誤分類される可能性がある。
本稿では,Wassersteinの分散ロバスト最適化(DRO)技術を用いて問題を再検討し,新しいコントリビューションを得た。
論文 参考訳(メタデータ) (2023-06-16T13:41:24Z) - Searching for the Essence of Adversarial Perturbations [73.96215665913797]
本稿では,ニューラルネットワークの誤予測の原因となる,人間の認識可能な情報を含む対人摂動について述べる。
この人間の認識可能な情報の概念は、敵の摂動に関連する重要な特徴を説明できる。
論文 参考訳(メタデータ) (2022-05-30T18:04:57Z) - Efficient and Robust Classification for Sparse Attacks [34.48667992227529]
我々は、画像認識、自然言語処理、マルウェア検出の領域において効果的な攻撃として示されてきた$ell$-normで束縛された摂動を考える。
我々は,「トランケーション」と「アドリアル・トレーニング」を組み合わせた新しい防衛手法を提案する。
得られた洞察に触発され、これらのコンポーネントをニューラルネットワーク分類器に拡張する。
論文 参考訳(メタデータ) (2022-01-23T21:18:17Z) - Tribrid: Stance Classification with Neural Inconsistency Detection [9.150728831518459]
本稿では,BERTなどのニューラルアーキテクチャを用いたソーシャルメディア上での自動姿勢分類を行う際の課題について検討する。
提案するニューラルアーキテクチャでは,任意のクレームに対して自動生成された否定的視点も含んでいる。
モデルは同時に複数の予測を行うように共同で学習され、元の視点の分類を改善するか、疑わしい予測をフィルタリングするために使用することができる。
論文 参考訳(メタデータ) (2021-09-14T08:13:03Z) - On the (Un-)Avoidability of Adversarial Examples [4.822598110892847]
ディープラーニングモデルの逆例は、その信頼性に大きな懸念を引き起こしている。
小摂動下でのモデルラベルの変更が正当化されるかどうかを決定するためのフレームワークを提供する。
適応的なデータ拡張は、決定論的ラベルの下で1-アレスト近傍の分類の整合性を維持していることを示す。
論文 参考訳(メタデータ) (2021-06-24T21:35:25Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
ディープラーニングの広く普及を制限する大きな課題は、敵の攻撃に対する脆弱さである。
本研究は,ディープニューラルネットワークの対角強靭性を評価するための新しい性能尺度である残留誤差の概念を提示する。
画像分類を用いた実験結果から,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2021-06-18T16:34:23Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
PPI(Proactive Pseudo-Intervention)と呼ばれる新しい対照的な学習戦略を提案する。
PPIは、因果関係のない画像の特徴を保護するために積極的に介入する。
また,重要な画像画素を識別するための,因果的に通知された新たなサリエンスマッピングモジュールを考案し,モデル解釈の容易性を示す。
論文 参考訳(メタデータ) (2020-12-06T20:30:26Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Self-Guided Multiple Instance Learning for Weakly Supervised Disease
Classification and Localization in Chest Radiographs [22.473965401043717]
局所化信頼度を高める畳み込みニューラルネットワークのトレーニングのための新しい損失関数を導入する
提案手法で提案する教師は,複数インスタンス学習用データセットの性能向上と,より正確な予測を行う。
論文 参考訳(メタデータ) (2020-09-30T22:19:40Z) - Neural Networks with Recurrent Generative Feedback [61.90658210112138]
畳み込みニューラルネットワーク(CNN)でこの設計をインスタンス化する
実験では、標準ベンチマーク上の従来のフィードフォワードCNNに対して、CNN-Fは敵のロバスト性を大幅に改善した。
論文 参考訳(メタデータ) (2020-07-17T19:32:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。