論文の概要: An Explainable Diagnostic Framework for Neurodegenerative Dementias via Reinforcement-Optimized LLM Reasoning
- arxiv url: http://arxiv.org/abs/2505.19954v1
- Date: Mon, 26 May 2025 13:18:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:43.454276
- Title: An Explainable Diagnostic Framework for Neurodegenerative Dementias via Reinforcement-Optimized LLM Reasoning
- Title(参考訳): Reinforcement-Optimized LLM Reasoningによる神経変性性認知症の診断フレームワーク
- Authors: Andrew Zamai, Nathanael Fijalkow, Boris Mansencal, Laurent Simon, Eloi Navet, Pierrick Coupe,
- Abstract要約: 診断透明性を高めるために2つのコアコンポーネントを統合するフレームワークを提案する。
まず,3次元T1強調脳MRIをテキスト・ラジオグラフィー・レポートに変換するモジュールパイプラインを提案する。
第2に,現代大規模言語モデル(LLM)の可能性を探り,臨床医の鑑別診断を支援する。
- 参考スコア(独自算出の注目度): 1.5646349560044959
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The differential diagnosis of neurodegenerative dementias is a challenging clinical task, mainly because of the overlap in symptom presentation and the similarity of patterns observed in structural neuroimaging. To improve diagnostic efficiency and accuracy, deep learning-based methods such as Convolutional Neural Networks and Vision Transformers have been proposed for the automatic classification of brain MRIs. However, despite their strong predictive performance, these models find limited clinical utility due to their opaque decision making. In this work, we propose a framework that integrates two core components to enhance diagnostic transparency. First, we introduce a modular pipeline for converting 3D T1-weighted brain MRIs into textual radiology reports. Second, we explore the potential of modern Large Language Models (LLMs) to assist clinicians in the differential diagnosis between Frontotemporal dementia subtypes, Alzheimer's disease, and normal aging based on the generated reports. To bridge the gap between predictive accuracy and explainability, we employ reinforcement learning to incentivize diagnostic reasoning in LLMs. Without requiring supervised reasoning traces or distillation from larger models, our approach enables the emergence of structured diagnostic rationales grounded in neuroimaging findings. Unlike post-hoc explainability methods that retrospectively justify model decisions, our framework generates diagnostic rationales as part of the inference process-producing causally grounded explanations that inform and guide the model's decision-making process. In doing so, our framework matches the diagnostic performance of existing deep learning methods while offering rationales that support its diagnostic conclusions.
- Abstract(参考訳): 神経変性性認知症の鑑別診断は、主に症状提示の重複と、構造的ニューロイメージングで観察されるパターンの類似が原因で、難しい臨床課題である。
診断効率と精度を向上させるため、脳MRIの自動分類のために畳み込みニューラルネットワークや視覚変換器などのディープラーニングベースの手法が提案されている。
しかし、予測性能が強いにもかかわらず、これらのモデルは不透明な意思決定のために臨床効果が限られている。
本研究では,診断透明性を高めるために2つのコアコンポーネントを統合するフレームワークを提案する。
まず,3次元T1強調脳MRIをテキスト・ラジオグラフィー・レポートに変換するモジュールパイプラインを提案する。
第2に,前頭側頭型認知症サブタイプ,アルツハイマー病,正常老化の鑑別診断における臨床医を支援するため,現代大規模言語モデル(LLMs)の可能性を検討する。
予測精度と説明可能性のギャップを埋めるため,LLMにおける診断推論の動機付けに強化学習を用いる。
提案手法は, より大規模なモデルからの指示的推論トレースや蒸留を必要とせず, 神経画像所見に基づく構造的診断的根拠の出現を可能にする。
モデル決定を振り返りに正当化するポストホックな説明可能性メソッドとは異なり、我々のフレームワークは、モデル決定プロセスに通知し、ガイドする因果的根拠を持つ推論プロセスの一部として、診断的合理性を生成する。
そこで本手法は,既存のディープラーニング手法の診断性能と一致し,その診断結果を支持する合理性を提供する。
関連論文リスト
- REMEMBER: Retrieval-based Explainable Multimodal Evidence-guided Modeling for Brain Evaluation and Reasoning in Zero- and Few-shot Neurodegenerative Diagnosis [6.446611581074913]
検索型マルチモーダル誘導型脳評価・推論モデルREMEMBERについて紹介する。
REMEMBERは、脳MRIスキャンを用いたゼロショットと少数ショットのアルツハイマーの診断を容易にする新しい機械学習フレームワークである。
実験結果から,REMEMBERはゼロショットと少数ショットの堅牢な性能を実現することが示された。
論文 参考訳(メタデータ) (2025-04-12T22:06:15Z) - ContrastDiagnosis: Enhancing Interpretability in Lung Nodule Diagnosis
Using Contrastive Learning [23.541034347602935]
臨床医のブラックボックスモデルに対する不信は、AI製品の臨床展開を妨げている。
ContrastDiagnosis(ContrastDiagnosis)を提案する。
AUCは0.977で高い診断精度を達成し、高い透明性と説明可能性を維持した。
論文 参考訳(メタデータ) (2024-03-08T13:00:52Z) - Towards the Identifiability and Explainability for Personalized Learner
Modeling: An Inductive Paradigm [36.60917255464867]
本稿では,エンコーダ・デコーダモデルにインスパイアされた新しい応答効率応答パラダイムに基づく,識別可能な認知診断フレームワークを提案する。
診断精度を損なうことなく,ID-CDFが効果的に対処できることが示唆された。
論文 参考訳(メタデータ) (2023-09-01T07:18:02Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
機能的磁気共鳴画像(fMRI)を軽度認知障害解析のための効果的な接続性にマッピングするために,脳画像から画像へのBIGG(Brain Imaging-to-graph generation)フレームワークを提案する。
発電機の階層変換器は、複数のスケールでノイズを推定するように設計されている。
ADNIデータセットの評価は,提案モデルの有効性と有効性を示す。
論文 参考訳(メタデータ) (2023-05-18T06:54:56Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
SpineOneと呼ばれる一段階検出フレームワークを提案し、MRIスライスから変性椎骨と椎骨を同時に局在化・分類する。
1)キーポイントの局所化と分類を促進するためのキーポイント・ヒートマップの新しい設計、2)ディスクと脊椎の表現をよりよく区別するためのアテンション・モジュールの使用、3)後期訓練段階における複数の学習目標を関連付けるための新しい勾配誘導客観的アソシエーション機構。
論文 参考訳(メタデータ) (2021-10-28T12:59:06Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
本稿では,乳房超音波画像における癌検出のための新しい深層学習手法であるBI-RADS-Netを紹介する。
提案手法は, 臨床診断に関連する特徴表現を学習することにより, 乳腺腫瘍の説明と分類を行うタスクを取り入れたものである。
臨床医が医療現場で診断・報告するために使用する形態学的特徴の観点から予測(良性または悪性)の説明が提供される。
論文 参考訳(メタデータ) (2021-10-05T19:14:46Z) - Learn-Explain-Reinforce: Counterfactual Reasoning and Its Guidance to
Reinforce an Alzheimer's Disease Diagnosis Model [1.6287500717172143]
本稿では、診断モデル学習、視覚的説明生成、訓練された診断モデル強化を統一する新しいフレームワークを提案する。
視覚的説明のために,対象ラベルとして識別される入力サンプルを変換する反ファクトマップを生成する。
論文 参考訳(メタデータ) (2021-08-21T07:29:13Z) - An explainable two-dimensional single model deep learning approach for
Alzheimer's disease diagnosis and brain atrophy localization [3.9281410693767036]
本稿では、アルツハイマー病(AD)の自動診断と、sMRIデータから、この疾患に関連する重要な脳領域の局所化について、エンドツーエンドのディープラーニングアプローチを提案する。
提案手法は,AD対認知正常(CN)とプログレッシブMCI(pMCI)と安定MCI(sMCI)の2つの分類タスクに対して,パブリックアクセス可能な2つのデータセットで評価されている。
実験結果から,本手法はマルチモデルや3次元CNN手法など,最先端の手法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2021-07-28T07:19:00Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z) - An Explainable 3D Residual Self-Attention Deep Neural Network FOR Joint
Atrophy Localization and Alzheimer's Disease Diagnosis using Structural MRI [22.34325971680329]
我々は,3D Residual Attention Deep Neural Network(3D ResAttNet)を導入し,SMRIスキャンによるエンドツーエンド学習によるアルツハイマー病早期診断のためのコンピュータ支援手法を提案する。
実験結果から,提案手法は精度と一般化性の観点から,最先端モデルに対して競争上の優位性があることが示唆された。
論文 参考訳(メタデータ) (2020-08-10T11:08:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。