論文の概要: Learning Causal Alignment for Reliable Disease Diagnosis
- arxiv url: http://arxiv.org/abs/2310.01766v2
- Date: Fri, 07 Feb 2025 04:15:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:53:23.142090
- Title: Learning Causal Alignment for Reliable Disease Diagnosis
- Title(参考訳): 信頼性疾患診断のための学習因果アライメント
- Authors: Mingzhou Liu, Ching-Wen Lee, Xinwei Sun, Yu Qiao, Yizhou Wang,
- Abstract要約: モデル決定過程を専門家のものと整合させるための因果関係に基づくアライメントフレームワークを提案する。
本手法が2つの診断応用に有効であることを示す。
- 参考スコア(独自算出の注目度): 32.94918336343018
- License:
- Abstract: Aligning the decision-making process of machine learning algorithms with that of experienced radiologists is crucial for reliable diagnosis. While existing methods have attempted to align their diagnosis behaviors to those of radiologists reflected in the training data, this alignment is primarily associational rather than causal, resulting in pseudo-correlations that may not transfer well. In this paper, we propose a causality-based alignment framework towards aligning the model's decision process with that of experts. Specifically, we first employ counterfactual generation to identify the causal chain of model decisions. To align this causal chain with that of experts, we propose a causal alignment loss that enforces the model to focus on causal factors underlying each decision step in the whole causal chain. To optimize this loss that involves the counterfactual generator as an implicit function of the model's parameters, we employ the implicit function theorem equipped with the conjugate gradient method for efficient estimation. We demonstrate the effectiveness of our method on two medical diagnosis applications, showcasing faithful alignment to radiologists.
- Abstract(参考訳): 機械学習アルゴリズムの意思決定プロセスと経験豊富な放射線技師の判断を合わせることは、信頼性の高い診断に不可欠である。
既存の方法では、トレーニングデータに反映された放射線科医の診断行動と一致させようとしているが、このアライメントは主に因果関係ではなく関連性があり、偽相関はうまく伝達されない可能性がある。
本稿では,モデル決定過程を専門家のものと整合させるための因果関係に基づくアライメントフレームワークを提案する。
具体的には、まず、モデル決定の因果連鎖を特定するために、反ファクトジェネレーションを用いる。
この因果連鎖を専門家のそれと整合させるため、因果連鎖全体における各決定ステップの根底にある因果因子にモデルを集中させる因果アライメント損失を提案する。
モデルパラメータの暗黙関数として反ファクトジェネレータが関与するこの損失を最適化するために,共役勾配法を用いた暗黙関数定理を用いて効率的な推定を行う。
本手法が放射線医に忠実な対応を示す2つの医学的診断応用に有効であることを示す。
関連論文リスト
- Wasserstein distributional robustness of neural networks [9.79503506460041]
ディープニューラルネットワークは敵攻撃(AA)に弱いことが知られている
画像認識タスクでは、元の小さな摂動によって画像が誤分類される可能性がある。
本稿では,Wassersteinの分散ロバスト最適化(DRO)技術を用いて問題を再検討し,新しいコントリビューションを得た。
論文 参考訳(メタデータ) (2023-06-16T13:41:24Z) - Searching for the Essence of Adversarial Perturbations [73.96215665913797]
本稿では,ニューラルネットワークの誤予測の原因となる,人間の認識可能な情報を含む対人摂動について述べる。
この人間の認識可能な情報の概念は、敵の摂動に関連する重要な特徴を説明できる。
論文 参考訳(メタデータ) (2022-05-30T18:04:57Z) - Efficient and Robust Classification for Sparse Attacks [34.48667992227529]
我々は、画像認識、自然言語処理、マルウェア検出の領域において効果的な攻撃として示されてきた$ell$-normで束縛された摂動を考える。
我々は,「トランケーション」と「アドリアル・トレーニング」を組み合わせた新しい防衛手法を提案する。
得られた洞察に触発され、これらのコンポーネントをニューラルネットワーク分類器に拡張する。
論文 参考訳(メタデータ) (2022-01-23T21:18:17Z) - Tribrid: Stance Classification with Neural Inconsistency Detection [9.150728831518459]
本稿では,BERTなどのニューラルアーキテクチャを用いたソーシャルメディア上での自動姿勢分類を行う際の課題について検討する。
提案するニューラルアーキテクチャでは,任意のクレームに対して自動生成された否定的視点も含んでいる。
モデルは同時に複数の予測を行うように共同で学習され、元の視点の分類を改善するか、疑わしい予測をフィルタリングするために使用することができる。
論文 参考訳(メタデータ) (2021-09-14T08:13:03Z) - On the (Un-)Avoidability of Adversarial Examples [4.822598110892847]
ディープラーニングモデルの逆例は、その信頼性に大きな懸念を引き起こしている。
小摂動下でのモデルラベルの変更が正当化されるかどうかを決定するためのフレームワークを提供する。
適応的なデータ拡張は、決定論的ラベルの下で1-アレスト近傍の分類の整合性を維持していることを示す。
論文 参考訳(メタデータ) (2021-06-24T21:35:25Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
ディープラーニングの広く普及を制限する大きな課題は、敵の攻撃に対する脆弱さである。
本研究は,ディープニューラルネットワークの対角強靭性を評価するための新しい性能尺度である残留誤差の概念を提示する。
画像分類を用いた実験結果から,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2021-06-18T16:34:23Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
PPI(Proactive Pseudo-Intervention)と呼ばれる新しい対照的な学習戦略を提案する。
PPIは、因果関係のない画像の特徴を保護するために積極的に介入する。
また,重要な画像画素を識別するための,因果的に通知された新たなサリエンスマッピングモジュールを考案し,モデル解釈の容易性を示す。
論文 参考訳(メタデータ) (2020-12-06T20:30:26Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Self-Guided Multiple Instance Learning for Weakly Supervised Disease
Classification and Localization in Chest Radiographs [22.473965401043717]
局所化信頼度を高める畳み込みニューラルネットワークのトレーニングのための新しい損失関数を導入する
提案手法で提案する教師は,複数インスタンス学習用データセットの性能向上と,より正確な予測を行う。
論文 参考訳(メタデータ) (2020-09-30T22:19:40Z) - Neural Networks with Recurrent Generative Feedback [61.90658210112138]
畳み込みニューラルネットワーク(CNN)でこの設計をインスタンス化する
実験では、標準ベンチマーク上の従来のフィードフォワードCNNに対して、CNN-Fは敵のロバスト性を大幅に改善した。
論文 参考訳(メタデータ) (2020-07-17T19:32:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。