論文の概要: Decoding Human Activities: Analyzing Wearable Accelerometer and Gyroscope Data for Activity Recognition
- arxiv url: http://arxiv.org/abs/2310.02011v3
- Date: Mon, 8 Jul 2024 18:09:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 00:31:04.044151
- Title: Decoding Human Activities: Analyzing Wearable Accelerometer and Gyroscope Data for Activity Recognition
- Title(参考訳): 人間の活動のデコード:活動認識のためのウェアラブル加速度計とジャイロスコープデータの解析
- Authors: Utsab Saha, Sawradip Saha, Tahmid Kabir, Shaikh Anowarul Fattah, Mohammad Saquib,
- Abstract要約: 人の動きや相対位置は、異なる種類のセンサーによって効果的に捕捉することができ、対応するセンサ出力は、異なる人間の活動の分類のための様々なマニピュレータ技術に利用することができる。
本稿では,FusionActNetという,多構造アーキテクチャにおける2つのユニークなアプローチを提案する。
その結果,UCI HARとMotion-Senseのデータセットでは,精度,精度,リコール,F1スコアにおいて既存手法よりも97.35%,精度が95.35%向上していることが明らかとなった。
- 参考スコア(独自算出の注目度): 1.262949092134022
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A person's movement or relative positioning can be effectively captured by different types of sensors and corresponding sensor output can be utilized in various manipulative techniques for the classification of different human activities. This letter proposes an effective scheme for human activity recognition, which introduces two unique approaches within a multi-structural architecture, named FusionActNet. The first approach aims to capture the static and dynamic behavior of a particular action by using two dedicated residual networks and the second approach facilitates the final decision-making process by introducing a guidance module. A two-stage training process is designed where at the first stage, residual networks are pre-trained separately by using static (where the human body is immobile) and dynamic (involving movement of the human body) data. In the next stage, the guidance module along with the pre-trained static or dynamic models are used to train the given sensor data. Here the guidance module learns to emphasize the most relevant prediction vector obtained from the static or dynamic models, which helps to effectively classify different human activities. The proposed scheme is evaluated using two benchmark datasets and compared with state-of-the-art methods. The results clearly demonstrate that our method outperforms existing approaches in terms of accuracy, precision, recall, and F1 score, achieving 97.35% and 95.35% accuracy on the UCI HAR and Motion-Sense datasets, respectively which highlights both the effectiveness and stability of the proposed scheme.
- Abstract(参考訳): 人の動きや相対位置は、異なる種類のセンサーによって効果的に捕捉することができ、対応するセンサ出力は、異なる人間の活動の分類のための様々なマニピュレータ技術に利用することができる。
本稿では,FusionActNetという,多構造アーキテクチャにおける2つのユニークなアプローチを提案する。
第1のアプローチは、2つの専用残余ネットワークを用いて、特定のアクションの静的かつ動的挙動をキャプチャすることを目的としており、第2のアプローチはガイダンスモジュールを導入することで最終的な意思決定プロセスを促進する。
2段階のトレーニングプロセスは、第1段階では、静的(人体が動かない場所)と動的(人体の運動に関わる)データを用いて、残留ネットワークを個別に事前訓練するように設計されている。
次の段階では、事前訓練された静的または動的モデルとともにガイダンスモジュールを使用して、所定のセンサーデータをトレーニングする。
ここで、ガイダンスモジュールは、静的または動的モデルから得られる最も関連性の高い予測ベクトルを強調することを学び、異なる人間のアクティビティを効果的に分類するのに役立つ。
提案手法は2つのベンチマークデータセットを用いて評価し,最先端手法と比較した。
その結果,提案手法は精度,精度,リコール,F1スコアにおいて既存手法よりも優れており,UCI HARとMotion-Senseデータセットの精度は97.35%,95.35%であった。
関連論文リスト
- Efficient Transferability Assessment for Selection of Pre-trained Detectors [63.21514888618542]
本稿では,事前学習対象検出器の効率的な伝達性評価について検討する。
我々は、事前訓練された検出器の大規模で多様な動物園を含む検出器転送性ベンチマークを構築した。
実験により,本手法は伝達性の評価において,他の最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-03-14T14:23:23Z) - Dynamic Inertial Poser (DynaIP): Part-Based Motion Dynamics Learning for
Enhanced Human Pose Estimation with Sparse Inertial Sensors [17.3834029178939]
本稿では,スパース慣性センサを用いた人間のポーズ推定手法を提案する。
さまざまなスケルトンフォーマットからの多様な実慣性モーションキャプチャデータを活用して、動作の多様性とモデル一般化を改善する。
このアプローチは、5つのパブリックデータセットにわたる最先端モデルよりも優れたパフォーマンスを示し、特にDIP-IMUデータセットのポーズエラーを19%削減する。
論文 参考訳(メタデータ) (2023-12-02T13:17:10Z) - A Real-time Human Pose Estimation Approach for Optimal Sensor Placement
in Sensor-based Human Activity Recognition [63.26015736148707]
本稿では,人間の行動認識に最適なセンサ配置の課題を解決するための新しい手法を提案する。
得られた骨格データは、最適なセンサ位置を特定するためのユニークな戦略を提供する。
本研究は,センサ配置の視覚的手法が従来のディープラーニング手法と同等の結果をもたらすことを示唆している。
論文 参考訳(メタデータ) (2023-07-06T10:38:14Z) - Self-Supervised Human Activity Recognition with Localized Time-Frequency
Contrastive Representation Learning [16.457778420360537]
スマートフォン加速度計データを用いた人間行動認識のための自己教師付き学習ソリューションを提案する。
加速度計信号から強い表現を学習し,クラスラベルへの依存度を低減させるモデルを開発した。
提案手法の性能をMotionSense, HAPT, HHARの3つのデータセットで評価した。
論文 参考訳(メタデータ) (2022-08-26T22:47:18Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
アクションラベルはソースデータセットでのみ利用可能だが、トレーニング段階のターゲットデータセットでは利用できない。
我々は,2つの骨格に基づく行動データセット間の領域シフトを低減するために,自己スーパービジョン方式を利用する。
時間的セグメントや人体部分のセグメンテーションとパーフォーミングにより、我々は2つの自己教師あり学習分類タスクを設計する。
論文 参考訳(メタデータ) (2022-07-17T07:05:39Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - Non-local Graph Convolutional Network for joint Activity Recognition and
Motion Prediction [2.580765958706854]
3次元骨格に基づく運動予測と行動認識は、人間の行動分析における2つの中間課題である。
本稿では, グラフ畳み込みニューラルネットワークとリカレントニューラルネットワークを併用した, 共同動作予測と活動認識のための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-08-03T14:07:10Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPODは、グラフの注目ネットワークに基づいて身体のダイナミクスを予測する新しい方法です。
実世界の課題を取り入れるために,各フレームで推定された身体関節が可視・視認可能かどうかを示す指標を学習する。
評価の結果,TRiPODは,各軌道に特化して設計され,予測タスクに特化している。
論文 参考訳(メタデータ) (2021-04-08T20:01:00Z) - One to Many: Adaptive Instrument Segmentation via Meta Learning and
Dynamic Online Adaptation in Robotic Surgical Video [71.43912903508765]
MDALは、ロボット支援手術における機器セグメンテーションのための動的オンライン適応学習スキームです。
ビデオ固有のメタ学習パラダイムを通じて、楽器の一般的な知識と高速適応能力を学ぶ。
2つのデータセットで他の最先端のメソッドよりも優れています。
論文 参考訳(メタデータ) (2021-03-24T05:02:18Z) - Self-supervised Human Activity Recognition by Learning to Predict
Cross-Dimensional Motion [16.457778420360537]
スマートフォン加速度計データを用いた人間行動認識のための自己教師型学習法を提案する。
まず、ラベルなし入力信号の表現は、深層畳み込みニューラルネットワークを訓練して加速度計値のセグメントを予測することによって学習される。
このタスクでは、凍結ネットワークの端に多数の完全に接続されたレイヤを追加し、ラベル付き加速度センサ信号で付加されたレイヤをトレーニングし、人間の活動の分類を学ぶ。
論文 参考訳(メタデータ) (2020-10-21T02:14:31Z) - Entropy Decision Fusion for Smartphone Sensor based Human Activity
Recognition [0.0]
本稿では,畳み込みニューラルネットワーク,再帰畳み込みネットワーク,ベクトルマシンをコンピュータで支援するためのアプローチを提案する。
UCI-HARとWISDMの2つのベンチマークデータセットで実験が行われた。
論文 参考訳(メタデータ) (2020-05-30T21:09:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。