論文の概要: Selenite: Scaffolding Decision Making with Comprehensive Overviews
Elicited from Large Language Models
- arxiv url: http://arxiv.org/abs/2310.02161v1
- Date: Tue, 3 Oct 2023 15:48:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-04 13:27:42.456411
- Title: Selenite: Scaffolding Decision Making with Comprehensive Overviews
Elicited from Large Language Models
- Title(参考訳): Selenite: 大規模言語モデルから取り除かれた包括的概要で決定を下す
- Authors: Michael Xieyang Liu, Tongshuang Wu, Tianying Chen, Franklin Mingzhe
Li, Aniket Kittur, Brad A. Myers
- Abstract要約: 本稿では,ユーザの感覚形成過程を飛躍させるための選択肢と基準を包括的に概観する,セレンタイトという新しいシステムを紹介する。
3つの研究を通して,Seleniteは正確かつ高品質な概要を確実に生成し,ユーザの情報処理を著しく促進し,全体的な理解とセンスメイキング体験を効果的に改善した。
- 参考スコア(独自算出の注目度): 40.1138275711273
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decision-making in unfamiliar domains can be challenging, demanding
considerable user effort to compare different options with respect to various
criteria. Prior research and our formative study found that people would
benefit from seeing an overview of the information space upfront, such as the
criteria that others have previously found useful. However, existing
sensemaking tools struggle with the "cold-start" problem -- it not only
requires significant input from previous users to generate and share these
overviews, but such overviews may also be biased and incomplete. In this work,
we introduce a novel system, Selenite, which leverages LLMs as reasoning
machines and knowledge retrievers to automatically produce a comprehensive
overview of options and criteria to jumpstart users' sensemaking processes.
Subsequently, Selenite also adapts as people use it, helping users find, read,
and navigate unfamiliar information in a systematic yet personalized manner.
Through three studies, we found that Selenite produced accurate and
high-quality overviews reliably, significantly accelerated users' information
processing, and effectively improved their overall comprehension and
sensemaking experience.
- Abstract(参考訳): 不慣れなドメインでの意思決定は困難であり、様々な基準に関して異なる選択肢を比較するためにかなりのユーザー努力を必要とする。
先行研究とフォーマティブな研究により、人々は前もって情報空間の概要を見ることで利益を得ることができた。
しかし、既存のセンスメイキングツールは、"コールドスタート"の問題に苦しむ -- これらの概要を生成して共有するには、以前のユーザからの重要なインプットを必要とするだけでなく、これらの概要も偏り、不完全である。
本研究では,LLMを推論機や知識検索機として活用し,ユーザの感覚形成過程を飛躍させるための選択肢と基準の包括的概要を自動生成する,新しいシステムであるSeleniteを紹介する。
次に、Seleniteは、ユーザーが慣れていない情報を体系的かつパーソナライズされた方法で見つけ、読み、ナビゲートするのを助ける。
3つの研究を通して,Seleniteは正確かつ高品質な概要を確実に生成し,ユーザの情報処理を著しく促進し,全体的な理解とセンスメイキング体験を効果的に改善した。
関連論文リスト
- CLARINET: Augmenting Language Models to Ask Clarification Questions for Retrieval [52.134133938779776]
CLARINETは,回答が正しい候補の確実性を最大化する質問を選択することで,情報的明確化を問うシステムである。
提案手法は,大規模言語モデル(LLM)を検索分布の条件付きで拡張し,各ターンで真の候補のランクを最大化する問題を生成する。
論文 参考訳(メタデータ) (2024-04-28T18:21:31Z) - Bayesian Preference Elicitation with Language Models [82.58230273253939]
本稿では,BOEDを用いて情報的質問の選択を案内するフレームワークOPENと,特徴抽出のためのLMを紹介する。
ユーザスタディでは,OPEN が既存の LM- や BOED をベースとした選好手法よりも優れていることが判明した。
論文 参考訳(メタデータ) (2024-03-08T18:57:52Z) - Knowledge-Augmented Large Language Models for Personalized Contextual
Query Suggestion [16.563311988191636]
我々は,Web上での検索と閲覧活動に基づいて,各ユーザを対象としたエンティティ中心の知識ストアを構築した。
この知識ストアは、公的な知識グラフ上の興味と知識のユーザ固有の集約予測のみを生成するため、軽量である。
論文 参考訳(メタデータ) (2023-11-10T01:18:47Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
大規模言語モデル(LLM)は自然言語処理(NLP)と人工知能(AI)の分野に革命をもたらした。
我々は, プレトレーニング, ファインチューニング, プロンプティングなどの様々な側面から, LLM を利用したレコメンデータシステムの総合的なレビューを行う。
論文 参考訳(メタデータ) (2023-07-05T06:03:40Z) - PIE: Personalized Interest Exploration for Large-Scale Recommender
Systems [0.0]
これらの課題に対処するために,大規模レコメンデータシステムにおける探索のためのフレームワークを提案する。
我々の方法論は、最小限の修正で既存の大規模レコメンデータシステムに容易に統合できる。
私たちの仕事は、何十億ものユーザーを対象とする人気のビデオ発見および共有プラットフォームであるFacebook Watchで運用されている。
論文 参考訳(メタデータ) (2023-04-13T22:25:09Z) - Social Fraud Detection Review: Methods, Challenges and Analysis [42.30892608083864]
社会的レビューはウェブを支配しており、製品情報の信頼できる情報源となっている。
企業は、単一のユーザ、ユーザグループ、あるいは不正コンテンツを生成するために訓練されたボットを使用して、偽情報を広めるために、ソーシャル情報を利用する。
多くの研究がユーザ行動に基づくアプローチを提案し、不正検出の課題に対処するためのテキストをレビューした。
論文 参考訳(メタデータ) (2021-11-10T11:25:20Z) - Advances and Challenges in Conversational Recommender Systems: A Survey [133.93908165922804]
現在の会話レコメンダーシステム(CRS)で使用されるテクニックの体系的なレビューを提供します。
CRS開発の主な課題を5つの方向にまとめます。
これらの研究の方向性は、情報検索(IR)、自然言語処理(NLP)、人間とコンピュータの相互作用(HCI)などの複数の研究分野を含みます。
論文 参考訳(メタデータ) (2021-01-23T08:53:15Z) - Zero-Shot Heterogeneous Transfer Learning from Recommender Systems to
Cold-Start Search Retrieval [30.95373255143698]
本稿では,学習知識を推薦システムコンポーネントから伝達し,コンテンツプラットフォームの検索コンポーネントを改善するZero-Shot Heterogeneous Transfer Learningフレームワークを提案する。
弊社は、Googleから世界最大の検索とレコメンデーションシステムのひとつで、オンラインとオフラインで実験を行い、得られた結果と教訓を提示する。
論文 参考訳(メタデータ) (2020-08-07T01:22:56Z) - Presentation of a Recommender System with Ensemble Learning and Graph
Embedding: A Case on MovieLens [3.8848561367220276]
グループ分類とアンサンブル学習技術は,推薦システムにおける予測精度を高めるために用いられた。
The study was performed on the MovieLens datasets, and the obtained results showed the high efficiency of the present method。
論文 参考訳(メタデータ) (2020-07-15T12:52:15Z) - Deep Learning for Person Re-identification: A Survey and Outlook [233.36948173686602]
人物再識別(Re-ID)は、複数の重複しないカメラを通して興味ある人物を検索することを目的としている。
人物のRe-IDシステム開発に関わるコンポーネントを分離することにより、それをクローズドワールドとオープンワールドのセッティングに分類する。
論文 参考訳(メタデータ) (2020-01-13T12:49:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。