A Survey of Graph Unlearning
- URL: http://arxiv.org/abs/2310.02164v3
- Date: Sat, 16 Nov 2024 20:51:30 GMT
- Title: A Survey of Graph Unlearning
- Authors: Anwar Said, Yuying Zhao, Tyler Derr, Mudassir Shabbir, Waseem Abbas, Xenofon Koutsoukos,
- Abstract summary: Graph unlearning provides the means to remove sensitive data traces from trained models, upholding the right to be forgotten.
We present the first systematic review of graph unlearning approaches, encompassing a diverse array of methodologies.
We explore the versatility of graph unlearning across various domains, including but not limited to social networks, recommender systems, and resource-constrained environments like the Internet of Things.
- Score: 12.86327535559885
- License:
- Abstract: Graph unlearning emerges as a crucial advancement in the pursuit of responsible AI, providing the means to remove sensitive data traces from trained models, thereby upholding the right to be forgotten. It is evident that graph machine learning exhibits sensitivity to data privacy and adversarial attacks, necessitating the application of graph unlearning techniques to address these concerns effectively. In this comprehensive survey paper, we present the first systematic review of graph unlearning approaches, encompassing a diverse array of methodologies and offering a detailed taxonomy and up-to-date literature overview to facilitate the understanding of researchers new to this field. To ensure clarity, we provide lucid explanations of the fundamental concepts and evaluation measures used in graph unlearning, catering to a broader audience with varying levels of expertise. Delving into potential applications, we explore the versatility of graph unlearning across various domains, including but not limited to social networks, adversarial settings, recommender systems, and resource-constrained environments like the Internet of Things, illustrating its potential impact in safeguarding data privacy and enhancing AI systems' robustness. Finally, we shed light on promising research directions, encouraging further progress and innovation within the domain of graph unlearning. By laying a solid foundation and fostering continued progress, this survey seeks to inspire researchers to further advance the field of graph unlearning, thereby instilling confidence in the ethical growth of AI systems and reinforcing the responsible application of machine learning techniques in various domains.
Related papers
- Resilience in Knowledge Graph Embeddings [1.90894751866253]
We give a unified definition of resilience, encompassing several factors such as generalisation, performance consistency, distribution adaption, and robustness.
Our survey results show that most of the existing works focus on a specific aspect of resilience, namely robustness.
arXiv Detail & Related papers (2024-10-28T16:04:22Z) - Perturbation-based Graph Active Learning for Weakly-Supervised Belief Representation Learning [13.311498341765772]
The objective is to strategically identify valuable messages on social media graphs that are worth labeling within a constrained budget.
This paper proposes a graph data augmentation-inspired active learning strategy (PerbALGraph) that progressively selects messages for labeling.
arXiv Detail & Related papers (2024-10-24T22:11:06Z) - Towards Graph Prompt Learning: A Survey and Beyond [38.55555996765227]
Large-scale "pre-train and prompt learning" paradigms have demonstrated remarkable adaptability.
This survey categorizes over 100 relevant works in this field, summarizing general design principles and the latest applications.
arXiv Detail & Related papers (2024-08-26T06:36:42Z) - Graph Learning under Distribution Shifts: A Comprehensive Survey on
Domain Adaptation, Out-of-distribution, and Continual Learning [53.81365215811222]
We provide a review and summary of the latest approaches, strategies, and insights that address distribution shifts within the context of graph learning.
We categorize existing graph learning methods into several essential scenarios, including graph domain adaptation learning, graph out-of-distribution learning, and graph continual learning.
We discuss the potential applications and future directions for graph learning under distribution shifts with a systematic analysis of the current state in this field.
arXiv Detail & Related papers (2024-02-26T07:52:40Z) - Few-Shot Learning on Graphs: from Meta-learning to Pre-training and
Prompting [56.25730255038747]
This survey endeavors to synthesize recent developments, provide comparative insights, and identify future directions.
We systematically categorize existing studies into three major families: meta-learning approaches, pre-training approaches, and hybrid approaches.
We analyze the relationships among these methods and compare their strengths and limitations.
arXiv Detail & Related papers (2024-02-02T14:32:42Z) - A Survey of Data-Efficient Graph Learning [16.053913182723143]
We introduce a novel concept of Data-Efficient Graph Learning (DEGL) as a research frontier.
We systematically review recent advances on several key aspects, including self-supervised graph learning, semi-supervised graph learning, and few-shot graph learning.
arXiv Detail & Related papers (2024-02-01T09:28:48Z) - A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and
Future Directions [64.84521350148513]
Graphs represent interconnected structures prevalent in a myriad of real-world scenarios.
Effective graph analytics, such as graph learning methods, enables users to gain profound insights from graph data.
However, these methods often suffer from data imbalance, a common issue in graph data where certain segments possess abundant data while others are scarce.
This necessitates the emerging field of imbalanced learning on graphs, which aims to correct these data distribution skews for more accurate and representative learning outcomes.
arXiv Detail & Related papers (2023-08-26T09:11:44Z) - Privacy-Preserving Graph Machine Learning from Data to Computation: A
Survey [67.7834898542701]
We focus on reviewing privacy-preserving techniques of graph machine learning.
We first review methods for generating privacy-preserving graph data.
Then we describe methods for transmitting privacy-preserved information.
arXiv Detail & Related papers (2023-07-10T04:30:23Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.