論文の概要: Identifying and Manipulating the Personality Traits of Language Models
- arxiv url: http://arxiv.org/abs/2212.10276v1
- Date: Tue, 20 Dec 2022 14:24:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-21 16:15:34.009784
- Title: Identifying and Manipulating the Personality Traits of Language Models
- Title(参考訳): 言語モデルのパーソナリティ特性の同定と操作
- Authors: Graham Caron and Shashank Srivastava
- Abstract要約: 言語モデルにおける知覚的パーソナリティが、言語生成において一貫して現れるかどうかを検討する。
BERT や GPT2 のような言語モデルでは、異なる文脈におけるパーソナライズマーカーの識別と反映が一貫して可能であることを示す。
この振る舞いは、非常に予測可能な方法で操作できる能力を示し、それらを人格の特徴を特定し、ダイアログシステムのようなアプリケーションにおけるペルソナを制御するツールとしてフレーム化します。
- 参考スコア(独自算出の注目度): 9.213700601337383
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Psychology research has long explored aspects of human personality such as
extroversion, agreeableness and emotional stability. Categorizations like the
`Big Five' personality traits are commonly used to assess and diagnose
personality types. In this work, we explore the question of whether the
perceived personality in language models is exhibited consistently in their
language generation. For example, is a language model such as GPT2 likely to
respond in a consistent way if asked to go out to a party? We also investigate
whether such personality traits can be controlled. We show that when provided
different types of contexts (such as personality descriptions, or answers to
diagnostic questions about personality traits), language models such as BERT
and GPT2 can consistently identify and reflect personality markers in those
contexts. This behavior illustrates an ability to be manipulated in a highly
predictable way, and frames them as tools for identifying personality traits
and controlling personas in applications such as dialog systems. We also
contribute a crowd-sourced data-set of personality descriptions of human
subjects paired with their `Big Five' personality assessment data, and a
data-set of personality descriptions collated from Reddit.
- Abstract(参考訳): 心理学の研究は、外向性、同意性、感情的な安定といった人間の個性の側面を長い間研究してきた。
ビッグファイブ」の性格特性のような分類は、パーソナリティタイプの評価と診断に一般的に用いられる。
本研究では,言語モデルにおける知覚的パーソナリティが,言語生成において一貫して表れているかどうかを考察する。
例えば、GPT2のような言語モデルは、パーティーに行くように頼まれた場合、一貫した方法で応答する可能性が高いか?
また,このような性格特性を制御できるかどうかについても検討する。
人格記述や人格特性に関する診断問題に対する回答など) の異なる文脈を提供すると, BERT や GPT2 などの言語モデルがそれらの文脈における人格マーカーを一貫して識別・反映できることを示す。
この振る舞いは、非常に予測可能な方法で操作できる能力を示し、それらを人格の特徴を特定し、ダイアログシステムのようなアプリケーションにおけるペルソナを制御するツールとしてフレーム化します。
また,「ビッグファイブ」パーソナリティ評価データと組み合わせた被験者のパーソナリティ記述のクラウドソースデータセットと,redditから照合したパーソナリティ記述のデータセットを提案する。
関連論文リスト
- Evaluating Personality Traits in Large Language Models: Insights from Psychological Questionnaires [3.6001840369062386]
この研究は、多種多様なシナリオにおける大規模言語モデルに心理学的ツールを適用し、パーソナリティプロファイルを生成する。
以上の結果から, LLMは, 同一モデル群においても, 特徴, 特徴, 性格の異なる特徴を示すことが明らかとなった。
論文 参考訳(メタデータ) (2025-02-07T16:12:52Z) - Revealing Personality Traits: A New Benchmark Dataset for Explainable Personality Recognition on Dialogues [63.936654900356004]
パーソナリティ認識は,対話やソーシャルメディア投稿などのユーザデータに含まれる性格特性を識別することを目的としている。
本稿では,人格特性の証拠として推論過程を明らかにすることを目的とした,説明可能な人格認識という新しい課題を提案する。
論文 参考訳(メタデータ) (2024-09-29T14:41:43Z) - The Effects of Embodiment and Personality Expression on Learning in LLM-based Educational Agents [0.7499722271664147]
本研究は,人格表現と体格が,教育的会話エージェントにおける人格認識と学習にどのように影響するかを考察する。
教育アプリケーションに適したLLMベースの会話支援を統合することで、既存のパーソナリティ駆動型会話エージェントフレームワークを拡張した。
1)対話を通して人格を伝達する対話のみのモデル,(2)対話のみで人格を表現するアニメーション人間モデル,(3)対話と身体と顔のアニメーションを通して人格を表現するアニメーション人間モデル,の3つのモデルを評価する。
論文 参考訳(メタデータ) (2024-06-24T09:38:26Z) - EERPD: Leveraging Emotion and Emotion Regulation for Improving Personality Detection [19.98674724777821]
EERPDと呼ばれる新しい人格検出手法を提案する。
本手法では,人格予測において,人格に強く相関する心理的概念である感情制御を導入する。
実験の結果,ERPDは人格検出の精度とロバスト性を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2024-06-23T11:18:55Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
PsyCoTと呼ばれる新しい人格検出手法を提案する。これは、個人がマルチターン対話方式で心理的質問を完遂する方法を模倣するものである。
実験の結果,PsyCoTは人格検出におけるGPT-3.5の性能とロバスト性を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2023-10-31T08:23:33Z) - InCharacter: Evaluating Personality Fidelity in Role-Playing Agents through Psychological Interviews [57.04431594769461]
本稿では, RPAの性格的忠実度を心理的尺度で評価するための新しい視点を紹介する。
実験には様々な種類の RPA と LLM が含まれ、14の広く使用されている心理学的尺度で32の異なる文字をカバーしている。
InCharacterでは、現在最先端のRPAが人物の人格と高度に一致した個性を示し、80.7%の精度を達成している。
論文 参考訳(メタデータ) (2023-10-27T08:42:18Z) - Editing Personality for Large Language Models [73.59001811199823]
本稿では,Large Language Models (LLMs) の性格特性の編集に焦点をあてた革新的なタスクを紹介する。
このタスクに対処する新しいベンチマークデータセットであるPersonalityEditを構築します。
論文 参考訳(メタデータ) (2023-10-03T16:02:36Z) - Evaluating and Inducing Personality in Pre-trained Language Models [78.19379997967191]
人間の個性理論を機械行動研究のツールとして活用することで,心理測定研究からインスピレーションを得た。
これらの疑問に答えるために,機械の動作を研究するためのMachine Personality Inventory(MPI)ツールを紹介した。
MPIは、ビッグファイブ・パーソナリティ・ファクター(Big Five Personality Factors、ビッグファイブ・パーソナリティ・ファクター)理論とパーソナリティ評価在庫に基づく標準化されたパーソナリティ・テストに従う。
パーソナリティ・プロンプト法(P2法)を考案し、特定のパーソナリティを持つLSMを制御可能な方法で誘導する。
論文 参考訳(メタデータ) (2022-05-20T07:32:57Z) - Vyaktitv: A Multimodal Peer-to-Peer Hindi Conversations based Dataset
for Personality Assessment [50.15466026089435]
本稿では,ピアツーピアのHindi会話データセットであるVyaktitvを提案する。
参加者の高品質な音声とビデオの録音と、会話ごとにヒングリッシュのテキストによる書き起こしで構成されている。
データセットには、収入、文化的指向など、すべての参加者のための豊富な社会デコグラフィー的特徴が含まれています。
論文 参考訳(メタデータ) (2020-08-31T17:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。