論文の概要: Dynamic LLM-Agent Network: An LLM-agent Collaboration Framework with
Agent Team Optimization
- arxiv url: http://arxiv.org/abs/2310.02170v1
- Date: Tue, 3 Oct 2023 16:05:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-04 13:29:10.809092
- Title: Dynamic LLM-Agent Network: An LLM-agent Collaboration Framework with
Agent Team Optimization
- Title(参考訳): 動的LLMエージェントネットワーク:エージェントチーム最適化によるLLMエージェント協調フレームワーク
- Authors: Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, Diyi Yang
- Abstract要約: 大規模言語モデル(LLM)エージェントは幅広いタスクで有効であることが示されており、複数のLLMエージェントを組み込むことで、その性能をさらに向上することができる。
既存のアプローチでは、固定されたエージェントセットを使用して静的アーキテクチャで相互に相互作用する。
我々は、推論やコード生成といった複雑なタスクにおいて、LLM-agentコラボレーションのためにDynamic LLM-Agent Network(textbfDyLAN$)というフレームワークを構築します。
- 参考スコア(独自算出の注目度): 59.39113350538332
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language model (LLM) agents have been shown effective on a wide range
of tasks, and by ensembling multiple LLM agents, their performances could be
further improved. Existing approaches employ a fixed set of agents to interact
with each other in a static architecture, which limits their generalizability
to various tasks and requires strong human prior in designing these agents. In
this work, we propose to construct a strategic team of agents communicating in
a dynamic interaction architecture based on the task query. Specifically, we
build a framework named Dynamic LLM-Agent Network ($\textbf{DyLAN}$) for
LLM-agent collaboration on complicated tasks like reasoning and code
generation. DyLAN enables agents to interact for multiple rounds in a dynamic
architecture with inference-time agent selection and an early-stopping
mechanism to improve performance and efficiency. We further design an automatic
agent team optimization algorithm based on an unsupervised metric termed
$\textit{Agent Importance Score}$, enabling the selection of best agents based
on the contribution each agent makes. Empirically, we demonstrate that DyLAN
performs well in both reasoning and code generation tasks with reasonable
computational cost. DyLAN achieves 13.0% and 13.3% improvement on MATH and
HumanEval, respectively, compared to a single execution on GPT-35-turbo. On
specific subjects of MMLU, agent team optimization in DyLAN increases accuracy
by up to 25.0%.
- Abstract(参考訳): 大規模言語モデル(LLM)エージェントは幅広いタスクで有効であることが示されており、複数のLLMエージェントを組み込むことで、その性能をさらに向上することができる。
既存のアプローチでは、静的なアーキテクチャで相互作用するエージェントの固定セットを採用しており、それらは様々なタスクへの一般化性を制限し、これらのエージェントを設計する際には強い人間を必要とする。
本研究では,タスククエリに基づく動的インタラクションアーキテクチャでコミュニケーションするエージェントの戦略的チームを構築することを提案する。
具体的には、推論やコード生成といった複雑なタスクにおけるLLMエージェントの協調のために、Dynamic LLM-Agent Network(\textbf{DyLAN}$)というフレームワークを構築します。
dylanによってエージェントは、推論時間エージェントの選択と早期停止機構によって、動的アーキテクチャで複数のラウンドに対して対話でき、パフォーマンスと効率が向上する。
さらに, エージェント毎のコントリビューションに基づいたベストエージェントの選択を可能にする, $\textit{Agent Importance Score}$ と呼ばれる教師なしメトリックに基づく自動エージェントチームの最適化アルゴリズムを設計する。
実験により、DyLANは合理的な計算コストで推論タスクとコード生成タスクの両方でうまく機能することを示した。
DyLANはMATHとHumanEvalでそれぞれ13.0%と13.3%改善している。
MMLUの特定の主題について、DyLANのエージェントチームの最適化により、最大25.0%の精度が向上する。
関連論文リスト
- MorphAgent: Empowering Agents through Self-Evolving Profiles and Decentralized Collaboration [8.078098082305575]
本稿では,分散マルチエージェントコラボレーションのための新しいフレームワークであるMorphAgentを紹介する。
MorphAgentは3つの主要なメトリクスで最適化された自己進化エージェントプロファイルを使用している。
実験の結果,MorphAgentはタスク性能や要求の変化に対する適応性という点で従来の静的ロールMASよりも優れていた。
論文 参考訳(メタデータ) (2024-10-19T09:10:49Z) - Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement [117.94654815220404]
G"odel AgentはG"odelマシンにインスパイアされた自己進化型フレームワークである。
G"odel Agentは、パフォーマンス、効率、一般化性において手作業によるエージェントを上回る、継続的な自己改善を実現することができる。
論文 参考訳(メタデータ) (2024-10-06T10:49:40Z) - Optimizing Collaboration of LLM based Agents for Finite Element Analysis [1.5039745292757671]
本稿では,Large Language Models (LLM) 内の複数のエージェント間の相互作用について,プログラミングおよびコーディングタスクの文脈で検討する。
我々はAutoGenフレームワークを利用してエージェント間の通信を容易にし、各セットアップの40のランダムランからの成功率に基づいて異なる構成を評価する。
論文 参考訳(メタデータ) (2024-08-23T23:11:08Z) - EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms [55.77492625524141]
EvoAgentは進化的アルゴリズムによって専門家エージェントをマルチエージェントシステムに自動的に拡張する汎用的な手法である。
EvoAgentは複数の専門家エージェントを自動生成し,LLMエージェントのタスク解決能力を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2024-06-20T11:49:23Z) - Agent-FLAN: Designing Data and Methods of Effective Agent Tuning for Large Language Models [56.00992369295851]
オープンソースのLarge Language Models(LLM)は、さまざまなNLPタスクで大きな成功を収めていますが、エージェントとして振る舞う場合、それでもAPIベースのモデルよりもはるかに劣っています。
本稿では,(1) エージェント学習コーパスを,(1) エージェント学習データの分布から大きくシフトするエージェント推論と,(2) エージェントタスクが必要とする能力に異なる学習速度を示すエージェント学習コーパスと,(3) 幻覚を導入することでエージェント能力を改善する際の副作用について述べる。
本稿では,エージェントのためのFLANモデルを効果的に構築するためのエージェントFLANを提案する。
論文 参考訳(メタデータ) (2024-03-19T16:26:10Z) - Learning to Use Tools via Cooperative and Interactive Agents [58.77710337157665]
ツール学習は、外部ツールを使用してユーティリティを拡張するエージェントとして、大きな言語モデル(LLM)を促進する。
ツール選択,ツール実行,アクションキャリブレーションの3つの特別なエージェントを個別にコーディネートする,協調型対話型エージェントフレームワークであるConAgentsを提案する。
3つのデータセットに対する実験により、LLMは、ConAgentsを装備した場合、大幅に改善されたベースラインよりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-03-05T15:08:16Z) - AgentLite: A Lightweight Library for Building and Advancing
Task-Oriented LLM Agent System [91.41155892086252]
LLMエージェントの研究を簡略化する新しいAIエージェントライブラリであるAgentLiteをオープンソースとして公開する。
AgentLiteは、タスクを分解するエージェントの機能を強化するために設計されたタスク指向フレームワークである。
我々は,その利便性と柔軟性を示すために,AgentLiteで開発された実用アプリケーションを紹介した。
論文 参考訳(メタデータ) (2024-02-23T06:25:20Z) - AutoAgents: A Framework for Automatic Agent Generation [27.74332323317923]
AutoAgentsは、さまざまなタスクに応じてAIチームを構築するために、複数の専門エージェントを適応的に生成し、コーディネートする革新的なフレームワークである。
各種ベンチマーク実験により,AutoAgentsは既存のマルチエージェント手法よりも一貫性と正確な解を生成することが示された。
論文 参考訳(メタデータ) (2023-09-29T14:46:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。