論文の概要: Ask Again, Then Fail: Large Language Models' Vacillations in Judgement
- arxiv url: http://arxiv.org/abs/2310.02174v2
- Date: Mon, 26 Feb 2024 08:26:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-27 19:21:47.991878
- Title: Ask Again, Then Fail: Large Language Models' Vacillations in Judgement
- Title(参考訳): もう一度聞くと失敗する: 大きな言語モデルによる判断の空白
- Authors: Qiming Xie, Zengzhi Wang, Yi Feng, and Rui Xia
- Abstract要約: 我々は、現在の会話言語モデルは、フォローアップ質問に直面した場合、判断を揺るがすことが多いことを観察する。
この矛盾を定量化するために,フォローアップ質問機構と2つの指標を導入する。
トレーニングベースのフレームワークUnwavering-FQを開発した。
- 参考スコア(独自算出の注目度): 28.74246375289661
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We observe that current conversational language models often waver in their
judgements when faced with follow-up questions, even if the original judgement
was correct. This wavering presents a significant challenge for generating
reliable responses and building user trust. To comprehensively assess this
issue, we introduce a Follow-up Questioning Mechanism along with two metrics to
quantify this inconsistency, confirming its widespread presence in current
language models. To mitigate this issue, we explore various prompting
strategies for closed-source models; moreover, we develop a training-based
framework Unwavering-FQ that teaches language models to maintain their
originally correct judgements through synthesized high-quality preference data.
Our experimental results confirm the effectiveness of our framework and its
ability to enhance the general capabilities of models
(https://github.com/NUSTM/LLMs-Waver-In-Judgements).
- Abstract(参考訳): 現在の会話言語モデルは、たとえ元の判断が正しいとしても、後続の疑問に直面して判断を揺らぐことが多い。
このウェーブリングは、信頼性の高い応答を生成し、ユーザ信頼を構築する上で大きな課題となる。
この問題を包括的に評価するために、2つの指標と共にフォローアップ質問機構を導入し、この不整合を定量化し、現在の言語モデルにおけるその広がりを確認した。
この問題を軽減するため,我々はクローズドソースモデルのための様々なプロンプト戦略を探求する。さらに,高品質な選好データを合成することで,言語モデルに元々正しい判断を維持するためのトレーニングベースのフレームワークunwavering-fqを開発した。
実験の結果、我々のフレームワークの有効性とモデルの汎用能力を高める能力を確認した(https://github.com/NUSTM/LLMs-Waver-In-Judgements)。
関連論文リスト
- Trustworthy Alignment of Retrieval-Augmented Large Language Models via Reinforcement Learning [84.94709351266557]
検索強化に関して,言語モデルの信頼性に焦点をあてる。
検索強化言語モデルには,文脈的知識とパラメトリック的知識の両方に応じて応答を供給できる本質的な能力があると考えられる。
言語モデルと人間の嗜好の整合性に着想を得て,検索強化言語モデルを外部証拠にのみ依存する状況に整合させるための第一歩を踏み出した。
論文 参考訳(メタデータ) (2024-10-22T09:25:21Z) - Improving Instruction Following in Language Models through Proxy-Based Uncertainty Estimation [12.921225188504643]
本稿では,ペア応答の品質に対するロバストな不確実性推定を導入した不確実性認識リワードモデル(URM)を提案する。
実験結果から,提案したプロキシを言語モデルトレーニングに組み込むことによる大きなメリットが示された。
論文 参考訳(メタデータ) (2024-05-10T12:14:11Z) - Evidence from counterfactual tasks supports emergent analogical reasoning in large language models [3.9189409002585562]
大規模な言語モデルでは、ゼロショット方式で幅広いテキストベースの類似問題を解くことができるという証拠を報告する。
最近の2つの注釈は、アルファベットの標準配列が任意に置換されるいわゆる反事実的タスクの証拠を引用して、これらの結果に異議を唱えている。
ここでは、これらの批判に回答し、本研究で使用した試験材料に関する誤解を明らかにし、言語モデルがこれらの新しい対実的タスク変種に一般化できることを示す。
論文 参考訳(メタデータ) (2024-04-14T21:51:02Z) - Calibrating the Confidence of Large Language Models by Eliciting Fidelity [52.47397325111864]
RLHFのようなテクニックで最適化された大規模な言語モデルは、有用で無害な点において優れた整合性を実現している。
調整後、これらの言語モデルはしばしば過剰な自信を示し、表現された自信は正確さの度合いで正確に校正しない。
本稿では,言語モデルの信頼度を推定するプラグイン・アンド・プレイ手法を提案する。
論文 参考訳(メタデータ) (2024-04-03T11:36:12Z) - Fine-tuning Language Models for Factuality [96.5203774943198]
大規模な事前訓練型言語モデル(LLM)は、しばしば伝統的な検索エンジンの代替として、広く使われるようになった。
しかし、言語モデルは説得力のあるが事実的に不正確な主張をしがちである(しばしば「幻覚」と呼ばれる)。
本研究では,人間のラベル付けなしに,より現実的な言語モデルを微調整する。
論文 参考訳(メタデータ) (2023-11-14T18:59:15Z) - Towards Improving Faithfulness in Abstractive Summarization [37.19777407790153]
本稿では,抽象的な要約における忠実度を改善するために,FES(Fithfulness Enhanced Summarization Model)を提案する。
我々のモデルはCNN/DMとXSumの実験において強いベースラインを上回ります。
論文 参考訳(メタデータ) (2022-10-04T19:52:09Z) - Learning from Lexical Perturbations for Consistent Visual Question
Answering [78.21912474223926]
既存のVisual Question Answering (VQA)モデルは、しばしば脆弱で入力のバリエーションに敏感である。
本稿では,モジュール型ネットワークに基づく新たなアプローチを提案し,言語摂動による2つの疑問を提起する。
VQA Perturbed Pairings (VQA P2) も提案する。
論文 参考訳(メタデータ) (2020-11-26T17:38:03Z) - Knowledge-Grounded Dialogue Generation with Pre-trained Language Models [74.09352261943911]
我々は、事前学習された言語モデルを用いた知識基底対話生成について研究する。
本稿では,知識選択モジュールを用いた事前学習言語モデルによって定義された等価応答生成を提案する。
論文 参考訳(メタデータ) (2020-10-17T16:49:43Z) - InfoBERT: Improving Robustness of Language Models from An Information
Theoretic Perspective [84.78604733927887]
BERTのような大規模言語モデルは、幅広いNLPタスクで最先端のパフォーマンスを実現している。
近年の研究では、このようなBERTベースのモデルが、テキストの敵対的攻撃の脅威に直面していることが示されている。
本稿では,事前学習した言語モデルの堅牢な微調整のための新しい学習フレームワークであるInfoBERTを提案する。
論文 参考訳(メタデータ) (2020-10-05T20:49:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。