論文の概要: Structurally guided task decomposition in spatial navigation tasks
- arxiv url: http://arxiv.org/abs/2310.02221v1
- Date: Tue, 3 Oct 2023 17:27:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-04 13:18:06.568387
- Title: Structurally guided task decomposition in spatial navigation tasks
- Title(参考訳): 空間ナビゲーションタスクにおける構造的タスク分解
- Authors: Ruiqi He, Carlos G. Correa, Thomas L. Griffiths, Mark K. Ho
- Abstract要約: 我々は,人間のタスク分解の既存のモデルを拡張して,幅広い単純な計画問題を説明する。
以上の結果から,本フレームワークはオンライン実験の参加者のナビゲーション戦略を正確に予測できることが示唆された。
- 参考スコア(独自算出の注目度): 7.21356271882087
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: How are people able to plan so efficiently despite limited cognitive
resources? We aimed to answer this question by extending an existing model of
human task decomposition that can explain a wide range of simple planning
problems by adding structure information to the task to facilitate planning in
more complex tasks. The extended model was then applied to a more complex
planning domain of spatial navigation. Our results suggest that our framework
can correctly predict the navigation strategies of the majority of the
participants in an online experiment.
- Abstract(参考訳): 認知資源が限られているのに、どうやって効率的に計画できるのか?
我々は,より複雑なタスクにおける計画を容易にするために,タスクに構造情報を追加することで,広範囲の簡単な計画問題を説明できる既存のタスク分解モデルを拡張して,この問題に対処することを目的とした。
拡張モデルは、空間ナビゲーションのより複雑な計画領域に適用された。
以上の結果から,本フレームワークはオンライン実験の参加者のナビゲーション戦略を正確に予測できることが示唆された。
関連論文リスト
- A Human-Like Reasoning Framework for Multi-Phases Planning Task with Large Language Models [15.874604623294427]
マルチパス計画問題には、アウトライン、情報収集、計画といった複数の相互接続ステージが含まれる。
既存の推論アプローチは、この複雑なタスクを効果的に解決するのに苦労しています。
本研究は,LLMエージェントのためのヒューマンライクな計画フレームワークを開発することで,この問題に対処することを目的としている。
論文 参考訳(メタデータ) (2024-05-28T14:13:32Z) - Unified Task and Motion Planning using Object-centric Abstractions of
Motion Constraints [56.283944756315066]
本稿では,タスクとモーションプランニングを一つの検索に統一するTAMP手法を提案する。
我々のアプローチは、オフザシェルフAIサーチの計算効率を活用して、物理的に実現可能な計画が得られるような、オブジェクト中心の動作制約の抽象化に基づいている。
論文 参考訳(メタデータ) (2023-12-29T14:00:20Z) - Learning Top-k Subtask Planning Tree based on Discriminative Representation Pre-training for Decision Making [9.302910360945042]
複雑な現実世界のタスクから抽出された事前知識による計画は、人間が正確な決定を行うために不可欠である。
マルチエンコーダと個別予測器を導入し、簡単なサブタスクのための十分なデータからタスク固有表現を学習する。
また、注意機構を用いてトップkのサブタスク計画木を生成し、未確認タスクの複雑な決定を導くためにサブタスク実行計画をカスタマイズする。
論文 参考訳(メタデータ) (2023-12-18T09:00:31Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
本稿では,タスク固有の計画表現を自動構築するフレームワークであるAdaについて述べる。
Adaは、プランナー互換の高レベルアクション抽象化と、特定の計画タスク領域に適応した低レベルコントローラのライブラリを対話的に学習する。
論文 参考訳(メタデータ) (2023-12-13T23:35:31Z) - Robot Task Planning Based on Large Language Model Representing Knowledge
with Directed Graph Structures [2.3698227130544547]
本研究では,人間の専門知識をLLMと組み合わせたタスクプランニング手法を提案し,LLMプロンプトテンプレートであるThink_Net_Promptを設計した。
さらに,タスクを段階的に分解し,タスクツリーを生成して各タスクの計画量を削減する手法を提案する。
論文 参考訳(メタデータ) (2023-06-08T13:10:00Z) - Hierarchical Imitation Learning with Vector Quantized Models [77.67190661002691]
我々は,専門家の軌跡におけるサブゴールの同定に強化学習を用いることを提案する。
同定されたサブゴールに対するベクトル量子化生成モデルを構築し,サブゴールレベルの計画を行う。
実験では、このアルゴリズムは複雑な長い水平決定問題の解法に優れ、最先端のアルゴリズムよりも優れている。
論文 参考訳(メタデータ) (2023-01-30T15:04:39Z) - Generalization with Lossy Affordances: Leveraging Broad Offline Data for
Learning Visuomotor Tasks [65.23947618404046]
本研究では,広範囲なデータを用いたオフライン強化学習を通じて,時間的拡張タスクの目標条件付きポリシを取得するフレームワークを提案する。
新たなタスク目標に直面した場合、フレームワークは余裕モデルを使用して、元のタスクをより簡単な問題に分解するサブゴールとして、損失のある表現のシーケンスを計画する。
我々は,従来の作業からロボット体験の大規模データセットを事前学習し,手動の報酬工学を使わずに視覚入力から,新しいタスクを効率的に微調整できることを実証した。
論文 参考訳(メタデータ) (2022-10-12T21:46:38Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
本稿では,タスクがサブタスクグラフによって特徴づけられる,数発の強化学習問題として定式化する。
我々のマルチタスクサブタスクグラフ推論器(MTSGI)は、トレーニングタスクから、まず、サブタスクグラフの観点から、一般的なハイレベルなタスク構造を推測する。
提案手法は,2次元グリッドワールドおよび複雑なWebナビゲーション領域において,タスクの共通基盤構造を学習し,活用し,未知のタスクへの適応を高速化する。
論文 参考訳(メタデータ) (2022-05-25T10:44:25Z) - Differentiable Spatial Planning using Transformers [87.90709874369192]
本研究では、長距離空間依存を計画して行動を生成する障害マップを与えられた空間計画変換器(SPT)を提案する。
エージェントが地上の真理マップを知らない環境では、エンド・ツー・エンドのフレームワークで事前訓練されたSPTを利用する。
SPTは、操作タスクとナビゲーションタスクの両方のすべてのセットアップにおいて、最先端の差別化可能なプランナーよりも優れています。
論文 参考訳(メタデータ) (2021-12-02T06:48:16Z) - Task Scoping: Generating Task-Specific Abstractions for Planning [19.411900372400183]
オープンスコープの世界モデルを用いた特定のタスクの計画は、計算的に難解である。
本稿では,初期条件,目標条件,タスクの遷移力学構造に関する知識を活用するタスクスコーピングを提案する。
タスクスコーピングは、関連要因やアクションを決して削除せず、その計算複雑性を特徴づけ、特に有用である計画上の問題を特徴づける。
論文 参考訳(メタデータ) (2020-10-17T21:19:25Z) - Flexible and Efficient Long-Range Planning Through Curious Exploration [13.260508939271764]
The Curious Sample Planner can realize temporallyextended plan for a wide range of really 3D task。
対照的に、標準的な計画と学習の方法は、多くの場合、これらのタスクを全く解決しなかったり、膨大な数のトレーニングサンプルでのみ実行できなかったりします。
論文 参考訳(メタデータ) (2020-04-22T21:47:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。