論文の概要: A Fisher-Rao gradient flow for entropy-regularised Markov decision processes in Polish spaces
- arxiv url: http://arxiv.org/abs/2310.02951v2
- Date: Thu, 05 Dec 2024 16:35:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:36:30.366459
- Title: A Fisher-Rao gradient flow for entropy-regularised Markov decision processes in Polish spaces
- Title(参考訳): ポーランド空間におけるエントロピー規則化マルコフ決定過程に対するフィッシャー・ラオ勾配流
- Authors: Bekzhan Kerimkulov, James-Michael Leahy, David Siska, Lukasz Szpruch, Yufei Zhang,
- Abstract要約: 無限水平エントロピー規則化マルコフ決定過程に対するフィッシャー・ラオ政策勾配流のポーランド状態と行動空間による大域収束について検討する。
勾配流の大域的健全性を確立し,その指数収束性を示す。
- 参考スコア(独自算出の注目度): 10.045995853506222
- License:
- Abstract: We study the global convergence of a Fisher-Rao policy gradient flow for infinite-horizon entropy-regularised Markov decision processes with Polish state and action space. The flow is a continuous-time analogue of a policy mirror descent method. We establish the global well-posedness of the gradient flow and demonstrate its exponential convergence to the optimal policy. Moreover, we prove the flow is stable with respect to gradient evaluation, offering insights into the performance of a natural policy gradient flow with log-linear policy parameterisation. To overcome challenges stemming from the lack of the convexity of the objective function and the discontinuity arising from the entropy regulariser, we leverage the performance difference lemma and the duality relationship between the gradient and mirror descent flows. Our analysis provides a theoretical foundation for developing various discrete policy gradient algorithms.
- Abstract(参考訳): 無限水平エントロピー規則化マルコフ決定過程に対するフィッシャー・ラオ政策勾配流のポーランド状態と行動空間による大域収束について検討する。
この流れはポリシーミラー降下法の連続的なアナログである。
勾配流の大域的健全性を確立し,その指数収束性を示す。
さらに,この流れが勾配評価に関して安定であることが証明され,対数線形政策パラメータ化による自然政策勾配流の性能に関する洞察を提供する。
エントロピー正規化器から生じる目的関数の凸性の欠如と不連続性の欠如から生じる課題を克服するために,性能差補間と勾配とミラー降下流の双対関係を利用する。
我々の分析は、様々な個別ポリシー勾配アルゴリズムを開発するための理論的基盤を提供する。
関連論文リスト
- Deterministic Policy Gradient Primal-Dual Methods for Continuous-Space Constrained MDPs [82.34567890576423]
我々は,非漸近収束を伴う最適決定主義政策を求めるための決定主義的政策勾配原始双対法を開発した。
D-PGPDの一次-双対反復は、最適正則化原始-双対にサブ線形速度で収束することが証明された。
我々の知る限り、これは連続空間制約型MDPに対する決定論的ポリシー探索法を提案する最初の研究であると思われる。
論文 参考訳(メタデータ) (2024-08-19T14:11:04Z) - Essentially Sharp Estimates on the Entropy Regularization Error in Discrete Discounted Markov Decision Processes [4.714840786221651]
エントロピー規則化自然ポリシー勾配法では,既存の線形保証の改善の2乗根において,全体の誤差が指数関数的に減少することを示す。
論文 参考訳(メタデータ) (2024-06-06T15:20:37Z) - On the Global Convergence of Policy Gradient in Average Reward Markov
Decision Processes [50.68789924454235]
我々は、平均報酬マルコフ決定過程(MDP)の文脈における政策勾配の最初の有限時間大域収束解析を示す。
我々の分析によると、ポリシー勾配は、$Oleft(frac1Tright)$のサブリニアレートで最適ポリシーに収束し、$Oleft(log(T)right)$ regretに変換され、$T$は反復数を表す。
論文 参考訳(メタデータ) (2024-03-11T15:25:03Z) - High-probability sample complexities for policy evaluation with linear function approximation [88.87036653258977]
本研究では,2つの広く利用されている政策評価アルゴリズムに対して,最適線形係数の予め定義された推定誤差を保証するために必要なサンプル複素量について検討する。
高確率収束保証に縛られた最初のサンプル複雑性を確立し、許容レベルへの最適依存を実現する。
論文 参考訳(メタデータ) (2023-05-30T12:58:39Z) - Linear Convergence of Natural Policy Gradient Methods with Log-Linear
Policies [115.86431674214282]
我々は、無限水平割引マルコフ決定過程を考察し、自然政策勾配(NPG)とQ-NPG法の収束率を対数線形ポリシークラスで検討する。
両手法が線形収束率と $mathcalO (1/epsilon2)$サンプル複雑度を, 単純で非適応的な幾何的に増加するステップサイズを用いて達成できることを示す。
論文 参考訳(メタデータ) (2022-10-04T06:17:52Z) - Linear convergence of a policy gradient method for finite horizon
continuous time stochastic control problems [3.7971225066055765]
本稿では,一般連続時空制御問題に対する確率収束勾配法を提案する。
アルゴリズムは制御点に線形に収束し、ステップごとのポリシーに対して安定であることを示す。
論文 参考訳(メタデータ) (2022-03-22T14:17:53Z) - On the Convergence Rates of Policy Gradient Methods [9.74841674275568]
有限状態部分空間における幾何的に割引された支配問題を考える。
試料中の直交勾配のパラリゼーションにより、勾配の一般的な複雑さを解析できることが示される。
論文 参考訳(メタデータ) (2022-01-19T07:03:37Z) - Convergence of policy gradient for entropy regularized MDPs with neural
network approximation in the mean-field regime [0.0]
無限水平連続状態および行動空間,エントロピー規則化マルコフ決定過程(MDPs)に対する政策勾配のグローバル収束性について検討する。
結果は非線形フォッカー-プランク-コルモゴロフ方程式の慎重な解析に依存する。
論文 参考訳(メタデータ) (2022-01-18T20:17:16Z) - On the Sample Complexity and Metastability of Heavy-tailed Policy Search
in Continuous Control [47.71156648737803]
強化学習(Reinforcement learning)は、システムダイナミクスモデルなしで、時間をかけてインセンティブを順次明らかにする、インタラクティブな意思決定のためのフレームワークである。
定義された連鎖を特徴付け、テールインデックスのレヴィプロセスに関連するポリシーがより広いピークに収まることを識別する。
論文 参考訳(メタデータ) (2021-06-15T20:12:44Z) - Statistically Efficient Off-Policy Policy Gradients [80.42316902296832]
政治外のデータから政策勾配を統計的に効率的に推定する。
パラメトリックな仮定を伴わずに下界を実現するメタアルゴリズムを提案する。
我々は、新たな推定政策勾配の方向へ進む際に、定常点に近づく速度の保証を確立する。
論文 参考訳(メタデータ) (2020-02-10T18:41:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。