論文の概要: Deep Variational Multivariate Information Bottleneck -- A Framework for Variational Losses
- arxiv url: http://arxiv.org/abs/2310.03311v3
- Date: Wed, 16 Apr 2025 15:58:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-26 08:19:38.455307
- Title: Deep Variational Multivariate Information Bottleneck -- A Framework for Variational Losses
- Title(参考訳): 変分多変量情報ボトルネック-変分損失のためのフレームワーク
- Authors: Eslam Abdelaleem, Ilya Nemenman, K. Michael Martini,
- Abstract要約: 従来の手法と最先端手法の両方を一般化する統一フレームワークを導入する。
我々は最先端のモデルに対してベンチマークを行い、優れた精度または競争的な精度を達成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational dimensionality reduction methods are widely used for their accuracy, generative capabilities, and robustness. We introduce a unifying framework that generalizes both such as traditional and state-of-the-art methods. The framework is based on an interpretation of the multivariate information bottleneck, trading off the information preserved in an encoder graph (defining what to compress) against that in a decoder graph (defining a generative model for data). Using this approach, we rederive existing methods, including the deep variational information bottleneck, variational autoencoders, and deep multiview information bottleneck. We naturally extend the deep variational CCA (DVCCA) family to beta-DVCCA and introduce a new method, the deep variational symmetric information bottleneck (DVSIB). DSIB, the deterministic limit of DVSIB, connects to modern contrastive learning approaches such as Barlow Twins, among others. We evaluate these methods on Noisy MNIST and Noisy CIFAR-100, showing that algorithms better matched to the structure of the problem like DVSIB and beta-DVCCA produce better latent spaces as measured by classification accuracy, dimensionality of the latent variables, sample efficiency, and consistently outperform other approaches under comparable conditions. Additionally, we benchmark against state-of-the-art models, achieving superior or competitive accuracy. Our results demonstrate that this framework can seamlessly incorporate diverse multi-view representation learning algorithms, providing a foundation for designing novel, problem-specific loss functions.
- Abstract(参考訳): 変動次元減少法は, 精度, 生成能力, 堅牢性に広く用いられている。
従来の手法と最先端手法の両方を一般化する統一フレームワークを導入する。
このフレームワークは多変量情報ボトルネックの解釈に基づいており、エンコーダグラフ(圧縮するものを定義する)に保存された情報とデコーダグラフ(データ生成モデルを定義する)の情報を交換する。
このアプローチを用いることで、深い変動情報ボトルネック、変動オートエンコーダ、深い多視点情報ボトルネックを含む既存の手法を再構築する。
本研究では,DVCCA(Deep variational CCA)ファミリーをβ-DVCCAに自然に拡張し,DVSIB(Deep variational symmetric information bottleneck)という新しい手法を導入する。
DVSIBの決定論的限界であるDSIBは、Barlow Twinsなどの現代のコントラスト学習アプローチと結びついている。
DVSIBやβ-DVCCAのようなアルゴリズムは、分類精度、潜伏変数の次元性、サンプル効率、および同等条件下での他のアプローチよりも優れた潜伏空間を生成することを示す。
さらに、最先端のモデルに対してベンチマークを行い、優れた精度または競争的な精度を達成する。
このフレームワークは, 多様な多視点表現学習アルゴリズムをシームレスに組み込むことができ, 問題固有の損失関数を設計するための基盤を提供する。
関連論文リスト
- Slim multi-scale convolutional autoencoder-based reduced-order models for interpretable features of a complex dynamical system [4.23655164575671]
本研究では,高次元流動データに対する新しい解釈可能な畳み込みオートエンコーダ(CAE)手法を提案する。
提案手法は,従来のCAEの復元品質を維持し,特徴解釈を可能にする。
提案手法は軽量で訓練が容易であり,64モードのPODに対して最大6.4%の相対再構成性能向上を実現している。
論文 参考訳(メタデータ) (2025-01-06T15:06:07Z) - You are out of context! [0.0]
新しいデータは、モデルによって学習された幾何学的関係を伸ばしたり、圧縮したり、ねじったりする力として振る舞うことができる。
本稿では,ベクトル空間表現における「変形」の概念に基づく機械学習モデルのための新しいドリフト検出手法を提案する。
論文 参考訳(メタデータ) (2024-11-04T10:17:43Z) - Protect Before Generate: Error Correcting Codes within Discrete Deep Generative Models [3.053842954605396]
本稿では,離散潜在変数モデルにおける変分推論を強化する新しい手法を提案する。
我々は誤り訂正符号(ECC)を活用し、潜伏表現に冗長性を導入する。
この冗長性は変分後部によって利用され、より正確な推定値が得られる。
論文 参考訳(メタデータ) (2024-10-10T11:59:58Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
画像品質評価(IQA)モデルは意味情報から大きな恩恵を受け、異なる種類のオブジェクトを明瞭に扱うことができる。
十分な注釈付きデータが不足している従来の手法では、セマンティックな認識を得るために、CLIPイメージテキスト事前学習モデルをバックボーンとして使用していた。
近年のアプローチでは、このミスマッチに即時技術を使って対処する試みがあるが、これらの解決策には欠点がある。
本稿では、IQAのための革新的なマルチモーダルプロンプトベースの手法を提案する。
論文 参考訳(メタデータ) (2024-04-23T11:45:32Z) - Differentiable Information Bottleneck for Deterministic Multi-view Clustering [9.723389925212567]
我々は、決定論的かつ分析的なMVCソリューションを提供する新しい微分可能情報ボトルネック(DIB)手法を提案する。
具体的には、まず、正規化されたカーネルグラム行列を利用して高次元空間の相互情報を直接適合させることを提案する。
そして、新たな相互情報測定に基づいて、解析勾配を持つ決定論的多視点ニューラルネットワークを明示的にトレーニングし、IBの原理をパラメータ化する。
論文 参考訳(メタデータ) (2024-03-23T02:13:22Z) - Diffusion-based Visual Counterfactual Explanations -- Towards Systematic
Quantitative Evaluation [64.0476282000118]
視覚的対物的説明法(VCE)の最新手法は、深い生成モデルの力を利用して、印象的な画質の高次元画像の新しい例を合成する。
評価手順が大きく異なり,個々の実例の視覚検査や小規模なユーザスタディなど,これらのVCE手法の性能を比較することは,現時点では困難である。
本稿では,VCE手法の体系的,定量的評価のためのフレームワークと,使用する指標の最小セットを提案する。
論文 参考訳(メタデータ) (2023-08-11T12:22:37Z) - Beyond Deep Ensembles: A Large-Scale Evaluation of Bayesian Deep
Learning under Distribution Shift [19.945634052291542]
我々は、WILDSコレクションから現実のデータセットに対する最新のBDLアルゴリズムを評価し、難解な分類と回帰タスクを含む。
我々は、大規模な、畳み込み、トランスフォーマーベースのニューラルネットワークアーキテクチャにおいて、アルゴリズムを比較した。
そこで本研究では,BDLを用いた大規模事前学習モデルのシステム評価を行った。
論文 参考訳(メタデータ) (2023-06-21T14:36:03Z) - Dimensionality Reduction as Probabilistic Inference [10.714603218784175]
次元性低減(DR)アルゴリズムは、高次元データを低次元表現に圧縮し、データの重要な特徴を保存する。
本稿では,多種多様な古典DRアルゴリズムを確率的推論アルゴリズムとして解釈するProbDR変分フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-15T23:48:59Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Numerical Optimizations for Weighted Low-rank Estimation on Language
Model [73.12941276331316]
Singular value decomposition (SVD) は、より小さい行列でターゲット行列を近似する最も一般的な圧縮手法の1つである。
標準SVDは行列内のパラメータを同じ重要性で扱うが、これは単純だが非現実的な仮定である。
本手法は,ニューラルベース言語モデルにおいて,現在のSOTA法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-02T00:58:02Z) - Dataset Condensation with Latent Space Knowledge Factorization and
Sharing [73.31614936678571]
与えられたデータセットの規則性を利用してデータセットの凝縮問題を解決する新しい手法を提案する。
データセットを元の入力空間に直接凝縮するのではなく、学習可能な一連のコードでデータセットの生成プロセスを仮定する。
提案手法は,様々なベンチマークデータセットに対して,有意なマージンで新しい最先端記録を達成できることを実験的に示す。
論文 参考訳(メタデータ) (2022-08-21T18:14:08Z) - Variational Distillation for Multi-View Learning [104.17551354374821]
我々は,多視点表現学習における2つの重要な特徴を利用するために,様々な情報ボトルネックを設計する。
厳密な理論的保証の下で,本手法は,観察とセマンティックラベルの内在的相関の把握を可能にする。
論文 参考訳(メタデータ) (2022-06-20T03:09:46Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
変分オートエンコーダ(VAE)は、償却変分推論に基づいて潜伏変数の後部を近似する。
よりディバースで不確実な潜在空間を学習するための代替モデルDU-VAEを提案する。
論文 参考訳(メタデータ) (2021-10-24T07:58:13Z) - SreaMRAK a Streaming Multi-Resolution Adaptive Kernel Algorithm [60.61943386819384]
既存のKRRの実装では、すべてのデータがメインメモリに格納される必要がある。
KRRのストリーミング版であるStreaMRAKを提案する。
本稿では,2つの合成問題と2重振り子の軌道予測について紹介する。
論文 参考訳(メタデータ) (2021-08-23T21:03:09Z) - Multivariate Data Explanation by Jumping Emerging Patterns Visualization [78.6363825307044]
多変量データセットにおけるパターンの識別と視覚的解釈を支援するVAX(multiVariate dAta eXplanation)を提案する。
既存の類似のアプローチとは異なり、VAXはJumping Emerging Patternsという概念を使って、複数の多様化したパターンを特定し、集約し、データ変数のロジックの組み合わせを通して説明を生成する。
論文 参考訳(メタデータ) (2021-06-21T13:49:44Z) - Information Theoretic Meta Learning with Gaussian Processes [74.54485310507336]
情報理論の概念,すなわち相互情報と情報のボトルネックを用いてメタ学習を定式化する。
相互情報に対する変分近似を用いることで、メタ学習のための汎用的かつトラクタブルな枠組みを導出する。
論文 参考訳(メタデータ) (2020-09-07T16:47:30Z) - Neural Decomposition: Functional ANOVA with Variational Autoencoders [9.51828574518325]
変分オートエンコーダ (VAEs) は次元減少に対する一般的なアプローチとなっている。
VAEのブラックボックスの性質のため、医療やゲノミクスの応用には限界があった。
本研究では,条件付きVAEの変動源の特徴付けに焦点をあてる。
論文 参考訳(メタデータ) (2020-06-25T10:29:13Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z) - Discovering Representations for Black-box Optimization [73.59962178534361]
ブラックボックス最適化符号化は手作業で行うのではなく,自動的に学習可能であることを示す。
学習された表現は、標準的なMAP-Elitesよりも桁違いに少ない評価で高次元の問題を解くことができることを示す。
論文 参考訳(メタデータ) (2020-03-09T20:06:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。