論文の概要: Denoising Diffusion Step-aware Models
- arxiv url: http://arxiv.org/abs/2310.03337v2
- Date: Mon, 29 Jan 2024 07:50:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-30 21:45:19.545410
- Title: Denoising Diffusion Step-aware Models
- Title(参考訳): デノジング拡散ステップアウェアモデル
- Authors: Shuai Yang, Yukang Chen, Luozhou Wang, Shu Liu, Yingcong Chen
- Abstract要約: 本稿では、この課題に対処するための新しいフレームワークDDSM(Denoising Diffusion Step-Aware Models)を提案する。
DDSMは進化探索によって決定されるように、各生成ステップの重要性に応じてサイズが適応されるニューラルネットワークのスペクトルを用いる。
CIFAR-10は49%、CelebA-HQは61%、LSUN-bedroomは59%、AFHQは71%、ImageNetは76%である。
- 参考スコア(独自算出の注目度): 32.4623172066776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Denoising Diffusion Probabilistic Models (DDPMs) have garnered popularity for
data generation across various domains. However, a significant bottleneck is
the necessity for whole-network computation during every step of the generative
process, leading to high computational overheads. This paper presents a novel
framework, Denoising Diffusion Step-aware Models (DDSM), to address this
challenge. Unlike conventional approaches, DDSM employs a spectrum of neural
networks whose sizes are adapted according to the importance of each generative
step, as determined through evolutionary search. This step-wise network
variation effectively circumvents redundant computational efforts, particularly
in less critical steps, thereby enhancing the efficiency of the diffusion
model. Furthermore, the step-aware design can be seamlessly integrated with
other efficiency-geared diffusion models such as DDIMs and latent diffusion,
thus broadening the scope of computational savings. Empirical evaluations
demonstrate that DDSM achieves computational savings of 49% for CIFAR-10, 61%
for CelebA-HQ, 59% for LSUN-bedroom, 71% for AFHQ, and 76% for ImageNet, all
without compromising the generation quality.
- Abstract(参考訳): Denoising Diffusion Probabilistic Models (DDPM) は、さまざまな領域にわたるデータ生成で人気を集めている。
しかし、大きなボトルネックは、生成プロセスのステップ毎にネットワーク全体の計算が必要であり、計算オーバーヘッドが高くなることである。
本稿では,この課題に対処するための新しいフレームワークDDSM(Denoising Diffusion Step-Aware Models)を提案する。
従来のアプローチとは異なり、DDSMは進化探索によって決定されるように、各生成ステップの重要性に応じてサイズが適応されるニューラルネットワークのスペクトルを用いる。
このステップワイズネットワークのばらつきは、冗長な計算作業を、特に批判の少ないステップで効果的に回避し、拡散モデルの効率を向上する。
さらに、ステップアウェア設計はDDIMや潜時拡散といった他の効率ゲージ拡散モデルとシームレスに統合することができ、計算節約の範囲を広げることができる。
実験的な評価では、DDSMはCIFAR-10で49%、CelebA-HQで61%、LSUN-bedroomで59%、AFHQで71%、ImageNetで76%の計算節約を達成した。
関連論文リスト
- Mitigating Embedding Collapse in Diffusion Models for Categorical Data [52.90687881724333]
我々は,学習を安定させる埋め込み空間内の連続拡散フレームワークであるCATDMを紹介する。
ベンチマーク実験により、CATDMは埋没崩壊を緩和し、FFHQ、LSUN教会、LSUNベッドルームにおいて優れた結果をもたらすことが示された。
論文 参考訳(メタデータ) (2024-10-18T09:12:33Z) - Flexiffusion: Segment-wise Neural Architecture Search for Flexible Denoising Schedule [50.260693393896716]
拡散モデル(diffusion model)は、多様な高品質な画像を生成するのに適した最先端の生成モデルである。
近年,より高速な生成プロセスの自動探索技術が採用されている。
拡散モデルの高速化を目的とした新しいトレーニングフリーNASパラダイムであるFlexiffusionを紹介する。
論文 参考訳(メタデータ) (2024-09-26T06:28:05Z) - Adv-KD: Adversarial Knowledge Distillation for Faster Diffusion Sampling [2.91204440475204]
拡散確率モデル(DPM)は、深層生成モデルの強力なクラスとして登場した。
それらは、サンプル生成中にシーケンシャルなデノイングステップに依存している。
モデルアーキテクチャに直接位相を分解する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-31T08:19:44Z) - LD-Pruner: Efficient Pruning of Latent Diffusion Models using Task-Agnostic Insights [2.8461446020965435]
本稿では,遅延拡散モデル圧縮のための新しい性能保存型構造化プルーニング手法であるLD-Prunerを紹介する。
我々は,テキスト・トゥ・イメージ(T2I)生成,無条件画像生成(UIG),無条件音声生成(UAG)の3つのタスクに対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2024-04-18T06:35:37Z) - An AI-enabled Bias-Free Respiratory Disease Diagnosis Model using Cough
Audio: A Case Study for COVID-19 [1.1146119513912156]
トレーニングデータ配信における共同創設者の影響を軽減するため, Bias Free Network (RBFNet) を提案する。
RBFNetは正確なRD診断機能を保証し、COVID19データセットを組み込むことでその関連性を強調する。
条件付き生成Adrial Network (cGAN) を定式化するための分類スキームに新たなバイアス予測器が組み込まれている
論文 参考訳(メタデータ) (2024-01-04T13:09:45Z) - Not All Steps are Equal: Efficient Generation with Progressive Diffusion
Models [62.155612146799314]
ステップ適応トレーニングと呼ばれる新しい2段階のトレーニング戦略を提案する。
初期段階では、ベース・デノナイジング・モデルはすべてのタイムステップを包含するように訓練される。
タイムステップを別々のグループに分割し、各グループ内でモデルを微調整して、特殊な認知機能を実現します。
論文 参考訳(メタデータ) (2023-12-20T03:32:58Z) - Diffusion Models Without Attention [110.5623058129782]
Diffusion State Space Model (DiffuSSM) は、よりスケーラブルな状態空間モデルバックボーンで注目メカニズムを置き換えるアーキテクチャである。
拡散訓練におけるFLOP効率の高いアーキテクチャへの注力は、大きな前進となる。
論文 参考訳(メタデータ) (2023-11-30T05:15:35Z) - Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution [67.9215891673174]
離散空間に対するスコアマッチングを自然に拡張する新たな損失として,スコアエントロピーを提案する。
標準言語モデリングタスク上で,Score Entropy Discrete Diffusionモデルをテストする。
論文 参考訳(メタデータ) (2023-10-25T17:59:12Z) - AdaDiff: Accelerating Diffusion Models through Step-Wise Adaptive Computation [32.74923906921339]
拡散モデルは多彩で高忠実な画像を生成する上で大きな成功を収めるが、それらの応用は本質的に遅い生成速度によって妨げられる。
本稿では,拡散モデルの生成効率を向上させるために,各サンプリングステップで動的に計算資源を割り当てる適応フレームワークであるAdaDiffを提案する。
論文 参考訳(メタデータ) (2023-09-29T09:10:04Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Denoising Diffusion Probabilistic Models (DDPM)のような既存のモデルは、高品質で多様なサンプルを提供するが、本質的に多くの反復的なステップによって遅くなる。
暗黙的要因と明示的要因を一致させることにより、この問題に対処する新しいアプローチを導入する。
提案手法は拡散モデルに匹敵する生成性能と,少数のサンプリングステップを持つモデルに比較して非常に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2023-06-21T18:49:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。