An operational definition of quantum information scrambling
- URL: http://arxiv.org/abs/2312.11619v1
- Date: Mon, 18 Dec 2023 19:00:01 GMT
- Title: An operational definition of quantum information scrambling
- Authors: Gabriele Lo Monaco, Luca Innocenti, Dario Cilluffo, Diana A. Chisholm,
Salvatore Lorenzo and G. Massimo Palma
- Abstract summary: Quantum information scrambling (QIS) is a characteristic feature of several quantum systems.
We propose a novel and computationally efficient QIS quantifier based on a formulation of QIS in terms of quantum state discrimination.
We show that the optimal guessing probability, which reflects the degree of QIS induced by an isometric quantum evolution, is directly connected to the accessible min-information.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum information scrambling (QIS) is a characteristic feature of several
quantum systems, ranging from black holes to quantum communication networks.
While accurately quantifying QIS is crucial to understanding many such
phenomena, common approaches based on the tripartite information have
limitations due to the accessibility issues of quantum mutual information, and
do not always properly take into consideration the dependence on the encoding
input basis. To address these issues, we propose a novel and computationally
efficient QIS quantifier, based on a formulation of QIS in terms of quantum
state discrimination. We show that the optimal guessing probability, which
reflects the degree of QIS induced by an isometric quantum evolution, is
directly connected to the accessible min-information, a generalized channel
capacity based on conditional min-entropy, which can be cast as a convex
program and thus computed efficiently. By applying our proposal to a range of
examples with increasing complexity, we illustrate its ability to capture the
multifaceted nature of QIS in all its intricacy.
Related papers
- Mixed-Dimensional Qudit State Preparation Using Edge-Weighted Decision Diagrams [3.393749500700096]
Quantum computers have the potential to solve intractable problems.
One key element to exploiting this potential is the capability to efficiently prepare quantum states for multi-valued, or qudit, systems.
In this paper, we investigate quantum state preparation with a focus on mixed-dimensional systems.
arXiv Detail & Related papers (2024-06-05T18:00:01Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Quantum reservoir probing: an inverse paradigm of quantum reservoir computing for exploring quantum many-body physics [0.0]
This study proposes a reciprocal research direction: probing quantum systems themselves through their information processing performance.
Building upon this concept, here we develop quantum reservoir probing (QRP), an inverse extension of the Quantum Reservoir Computing (QRC) paradigm.
Unifying quantum information and quantum matter, the QRP holds great promise as a potent tool for exploring various aspects of quantum many-body physics.
arXiv Detail & Related papers (2023-08-02T01:26:36Z) - Information scrambling and entanglement in quantum approximate
optimization algorithm circuits [9.730534141168752]
Variational quantum algorithms are promising for demonstrating quantum advantages in the noisy intermediate-scale quantum (NISQ) era.
We study information scrambling and entanglement in QAOA circuits, respectively, and discover that for a harder problem, more quantum resource is required.
arXiv Detail & Related papers (2023-01-18T11:36:49Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - Probably approximately correct quantum source coding [0.0]
Holevo's and Nayak's bounds give an estimate of the amount of classical information that can be stored in a quantum state.
We show two novel applications in quantum learning theory and delegated quantum computation with a purely classical client.
arXiv Detail & Related papers (2021-12-13T17:57:30Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.