論文の概要: Agent Instructs Large Language Models to be General Zero-Shot Reasoners
- arxiv url: http://arxiv.org/abs/2310.03710v2
- Date: Wed, 14 Aug 2024 17:39:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 18:36:49.390232
- Title: Agent Instructs Large Language Models to be General Zero-Shot Reasoners
- Title(参考訳): エージェントが大規模言語モデルにジェネラルゼロショット推論を指示
- Authors: Nicholas Crispino, Kyle Montgomery, Fankun Zeng, Dawn Song, Chenguang Wang,
- Abstract要約: 我々は,大規模言語モデルの推論過程を指示する自律エージェントを構築した。
このアプローチにより、大規模言語モデルのゼロショット推論能力がより多くのタスクに開放されることを示す。
- 参考スコア(独自算出の注目度): 44.85250881922078
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a method to improve the zero-shot reasoning abilities of large language models on general language understanding tasks. Specifically, we build an autonomous agent to instruct the reasoning process of large language models. We show this approach further unleashes the zero-shot reasoning abilities of large language models to more tasks. We study the performance of our method on a wide set of datasets spanning generation, classification, and reasoning. We show that our method generalizes to most tasks and obtains state-of-the-art zero-shot performance on 20 of the 29 datasets that we evaluate. For instance, our method boosts the performance of state-of-the-art large language models by a large margin, including Vicuna-13b (13.3%), Llama-2-70b-chat (23.2%), and GPT-3.5 Turbo (17.0%). Compared to zero-shot chain of thought, our improvement in reasoning is striking, with an average increase of 10.5%. With our method, Llama-2-70b-chat outperforms zero-shot GPT-3.5 Turbo by 10.2%.
- Abstract(参考訳): 汎用言語理解タスクにおいて,大規模言語モデルのゼロショット推論能力を向上させる手法を提案する。
具体的には,大規模言語モデルの推論過程を指示する自律エージェントを構築する。
このアプローチにより、大規模言語モデルのゼロショット推論能力がより多くのタスクに開放されることを示す。
本研究では,生成,分類,推論にまたがる幅広いデータセットに対して,本手法の性能について検討する。
提案手法は,多くのタスクに一般化され,評価した29のデータセットのうち20の最先端のゼロショット性能が得られることを示す。
例えば、Vicuna-13b (13.3%)、Llama-2-70b-chat (23.2%)、GPT-3.5 Turbo (17.0%)など、最先端の大規模言語モデルの性能が大幅に向上する。
ゼロショットの思考に比べれば、推論の改善は目覚ましいもので、平均して10.5%の増加です。
Llama-2-70b-chat はゼロショット GPT-3.5 Turbo を 10.2% 向上させる。
関連論文リスト
- Large Language Models are Contrastive Reasoners [8.427805316635318]
コントラスト的なプロンプトが,複雑な推論を行うための大規模言語モデルの能力を大幅に向上させることを示す。
様々な大きな言語モデルの実験では、ゼロショットのコントラストプロンプトが算術、常識、シンボリック推論タスクの性能を向上させることが示されている。
本手法は,ほとんどの算術的・常識的推論タスクにおいて,ゼロショットのCoTや少数ショットのCoTを超えるだけでなく,既存のプロンプトメソッドとシームレスに統合できる。
論文 参考訳(メタデータ) (2024-03-13T03:15:05Z) - POUF: Prompt-oriented unsupervised fine-tuning for large pre-trained
models [62.23255433487586]
モデルに微調整を施したり、ラベルのないターゲットデータにプロンプトを施したりするための教師なしの微調整フレームワークを提案する。
本稿では,プロンプトとターゲットデータから抽出した離散分布を整列させて,言語拡張視覚とマスキング言語モデルの両方に適用する方法を示す。
論文 参考訳(メタデータ) (2023-04-29T22:05:22Z) - Few-shot Learning with Multilingual Language Models [66.49496434282564]
多様な言語群をカバーするバランスの取れたコーパス上で,多言語の自動回帰言語モデルを訓練する。
私たちの最大のモデルは、20以上の代表言語で数ショットの学習において、新しい最先端の技術を定めています。
本稿では,モデルがどこで成功し,失敗するかを詳細に分析し,特に言語間の文脈内学習を可能にすることを示す。
論文 参考訳(メタデータ) (2021-12-20T16:52:35Z) - GLaM: Efficient Scaling of Language Models with Mixture-of-Experts [84.33607245023049]
我々はGLaM(Generalist Language Model)という言語モデル群を提案し,開発する。
GLaMは、厳密な変種に比べてトレーニングコストを大幅に削減しつつ、モデルのキャパシティを拡大するために、わずかに活性化されたミックス・オブ・エキスパートアーキテクチャを使用する。
GPT-3の訓練に使用するエネルギーの1/3しか消費せず、推論にはフロップの半分しか必要とせず、29のNLPタスクにまたがる全体的なゼロショットとワンショットのパフォーマンスは向上している。
論文 参考訳(メタデータ) (2021-12-13T18:58:19Z) - Scaling Language Models: Methods, Analysis & Insights from Training
Gopher [83.98181046650664]
本稿では,トランスフォーマーに基づく言語モデルの性能を,幅広いモデルスケールで解析する。
スケールからのゲインは、理解、事実確認、有害言語の同定などにおいて最大である。
我々は、AIの安全性と下流の害の軽減に対する言語モデルの適用について論じる。
論文 参考訳(メタデータ) (2021-12-08T19:41:47Z) - A Systematic Investigation of Commonsense Understanding in Large
Language Models [23.430757316504316]
大規模な言語モデルでは、ゼロショット設定で多くの自然言語処理(NLP)タスクで顕著なパフォーマンスを示している。
これらのモデルが4つのコモンセンスベンチマークに対してモデルを評価することによってコモンセンス理解を示すかどうかを問う。
論文 参考訳(メタデータ) (2021-10-31T22:20:36Z) - Finetuned Language Models Are Zero-Shot Learners [67.70352207685558]
命令チューニングは、目に見えないタスクにおけるゼロショット性能を向上することを示す。
137Bパラメータを事前訓練した言語モデルと、自然言語の命令テンプレートを介して言語化された60以上のNLPタスクにチューニングする。
FLANと呼ばれるこの命令調整モデルについて、未知のタスクタイプで評価する。
論文 参考訳(メタデータ) (2021-09-03T17:55:52Z) - ERNIE 3.0: Large-scale Knowledge Enhanced Pre-training for Language
Understanding and Generation [25.430130072811075]
大規模知識強化モデルの事前学習のための統合フレームワーク ERNIE 3.0 を提案する。
自動回帰ネットワークと自動エンコードネットワークを融合することで、トレーニングされたモデルを自然言語理解と生成タスクの両方に容易に適合させることができる。
我々は,テキストと大規模知識グラフからなる4TBコーパス上で,100億のパラメータでモデルを訓練した。
論文 参考訳(メタデータ) (2021-07-05T16:54:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。