Improving classifier decision boundaries using nearest neighbors
- URL: http://arxiv.org/abs/2310.03927v1
- Date: Thu, 5 Oct 2023 22:11:52 GMT
- Title: Improving classifier decision boundaries using nearest neighbors
- Authors: Johannes Schneider
- Abstract summary: We show that neural networks are not learning optimal decision boundaries.
We employ various self-trained and pre-trained convolutional neural networks to show that our approach improves (i) resistance to label noise, (ii) robustness against adversarial attacks, (iii) classification accuracy, and to some degree even (iv) interpretability.
- Score: 1.8592384822257952
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks are not learning optimal decision boundaries. We show that
decision boundaries are situated in areas of low training data density. They
are impacted by few training samples which can easily lead to overfitting. We
provide a simple algorithm performing a weighted average of the prediction of a
sample and its nearest neighbors' (computed in latent space) leading to a minor
favorable outcomes for a variety of important measures for neural networks. In
our evaluation, we employ various self-trained and pre-trained convolutional
neural networks to show that our approach improves (i) resistance to label
noise, (ii) robustness against adversarial attacks, (iii) classification
accuracy, and to some degree even (iv) interpretability. While improvements are
not necessarily large in all four areas, our approach is conceptually simple,
i.e., improvements come without any modification to network architecture,
training procedure or dataset. Furthermore, they are in stark contrast to prior
works that often require trade-offs among the four objectives or provide
valuable, but non-actionable insights.
Related papers
- No Wrong Turns: The Simple Geometry Of Neural Networks Optimization
Paths [12.068608358926317]
First-order optimization algorithms are known to efficiently locate favorable minima in deep neural networks.
We focus on the fundamental geometric properties of sampled quantities of optimization on two key paths.
Our findings suggest that not only do optimization trajectories never encounter significant obstacles, but they also maintain stable dynamics during the majority of training.
arXiv Detail & Related papers (2023-06-20T22:10:40Z) - A Simple Approach to Improve Single-Model Deep Uncertainty via
Distance-Awareness [33.09831377640498]
We study approaches to improve uncertainty property of a single network, based on a single, deterministic representation.
We propose Spectral-normalized Neural Gaussian Process (SNGP), a simple method that improves the distance-awareness ability of modern DNNs.
On a suite of vision and language understanding benchmarks, SNGP outperforms other single-model approaches in prediction, calibration and out-of-domain detection.
arXiv Detail & Related papers (2022-05-01T05:46:13Z) - Unsupervised Domain-adaptive Hash for Networks [81.49184987430333]
Domain-adaptive hash learning has enjoyed considerable success in the computer vision community.
We develop an unsupervised domain-adaptive hash learning method for networks, dubbed UDAH.
arXiv Detail & Related papers (2021-08-20T12:09:38Z) - Learning Neural Network Subspaces [74.44457651546728]
Recent observations have advanced our understanding of the neural network optimization landscape.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
arXiv Detail & Related papers (2021-02-20T23:26:58Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
We present a novel guided learning paradigm from real-valued to distill binary networks on the final prediction distribution.
Our proposed method can boost the simple contrastive learning baseline by an absolute gain of 5.515% on BNNs.
Our method achieves substantial improvement over the simple contrastive learning baseline, and is even comparable to many mainstream supervised BNN methods.
arXiv Detail & Related papers (2021-02-17T18:59:28Z) - Mixed-Privacy Forgetting in Deep Networks [114.3840147070712]
We show that the influence of a subset of the training samples can be removed from the weights of a network trained on large-scale image classification tasks.
Inspired by real-world applications of forgetting techniques, we introduce a novel notion of forgetting in mixed-privacy setting.
We show that our method allows forgetting without having to trade off the model accuracy.
arXiv Detail & Related papers (2020-12-24T19:34:56Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
arXiv Detail & Related papers (2020-12-03T10:17:30Z) - Depth Uncertainty in Neural Networks [2.6763498831034043]
Existing methods for estimating uncertainty in deep learning tend to require multiple forward passes.
By exploiting the sequential structure of feed-forward networks, we are able to both evaluate our training objective and make predictions with a single forward pass.
We validate our approach on real-world regression and image classification tasks.
arXiv Detail & Related papers (2020-06-15T14:33:40Z) - Hold me tight! Influence of discriminative features on deep network
boundaries [63.627760598441796]
We propose a new perspective that relates dataset features to the distance of samples to the decision boundary.
This enables us to carefully tweak the position of the training samples and measure the induced changes on the boundaries of CNNs trained on large-scale vision datasets.
arXiv Detail & Related papers (2020-02-15T09:29:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.