論文の概要: Improved prediction of ligand-protein binding affinities by
meta-modeling
- arxiv url: http://arxiv.org/abs/2310.03946v1
- Date: Thu, 5 Oct 2023 23:46:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-10 04:06:53.535261
- Title: Improved prediction of ligand-protein binding affinities by
meta-modeling
- Title(参考訳): メタモデリングによるリガンド-タンパク質結合親和性の予測
- Authors: Ho-Joon Lee, Prashant S. Emani, and Mark B. Gerstein
- Abstract要約: 実験的な構造に基づくドッキングとシーケンスに基づくディープラーニングモデルを統合することでメタモデリングフレームワークを開発する。
私たちの最高のメタモデルは、構造ベースのディープラーニングツールに匹敵するパフォーマンスを実現しています。
- 参考スコア(独自算出の注目度): 1.3859669037499769
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The accurate screening of candidate drug ligands against target proteins
through computational approaches is of prime interest to drug development
efforts, as filtering potential candidates would save time and expenses for
finding drugs. Such virtual screening depends in part on methods to predict the
binding affinity between ligands and proteins. Given many computational models
for binding affinity prediction with varying results across targets, we herein
develop a meta-modeling framework by integrating published empirical
structure-based docking and sequence-based deep learning models. In building
this framework, we evaluate many combinations of individual models, training
databases, and linear and nonlinear meta-modeling approaches. We show that many
of our meta-models significantly improve affinity predictions over individual
base models. Our best meta-models achieve comparable performance to
state-of-the-art exclusively structure-based deep learning tools. Overall, we
demonstrate that diverse modeling approaches can be ensembled together to gain
substantial improvement in binding affinity prediction while allowing control
over input features such as physicochemical properties or molecular
descriptors.
- Abstract(参考訳): 計算的アプローチによる標的タンパク質に対する候補薬物リガンドの正確なスクリーニングは、潜在的な候補をフィルタリングすることで、薬物発見の時間と費用を節約できるため、医薬品開発に最も関心がある。
このような仮想スクリーニングは、リガンドとタンパク質の結合親和性を予測する方法に依存する。
そこで本研究では, 実験的な構造に基づくドッキングとシーケンスに基づくディープラーニングモデルを統合することで, ターゲット毎に異なる結果とアフィニティ予測を結合する多くの計算モデルを構築した。
このフレームワークの構築において、個々のモデル、データベースのトレーニング、線形および非線形メタモデリングアプローチの多くの組み合わせを評価する。
メタモデルの多くは、個々のベースモデルに対する親和性予測を大幅に改善している。
私たちの最高のメタモデルは、構造ベースのディープラーニングツールに匹敵するパフォーマンスを実現しています。
本研究では, 物理化学的特性や分子ディスクリプタなどの入力特性を制御しながら, 結合親和性予測の大幅な向上を図るために, 多様なモデリング手法を組み合せることを示した。
関連論文リスト
- A Collaborative Ensemble Framework for CTR Prediction [73.59868761656317]
我々は、複数の異なるモデルを活用するための新しいフレームワーク、CETNet(Collaborative Ensemble Training Network)を提案する。
ナイーブなモデルスケーリングとは違って,私たちのアプローチは,共同学習による多様性とコラボレーションを重視しています。
当社のフレームワークは,Metaの3つのパブリックデータセットと大規模産業データセットに基づいて検証する。
論文 参考訳(メタデータ) (2024-11-20T20:38:56Z) - Integrating Large Language Models for Genetic Variant Classification [12.244115429231888]
大型言語モデル (LLM) は遺伝学においてトランスフォーメーションツールとして登場した。
本研究では,GPN-MSA,ESM1b,AlphaMissenseを含む最先端LLMの統合について検討した。
提案手法は,よく注釈付けされたProteinGymとClinVarのデータセットを用いて,これらの統合モデルを評価する。
論文 参考訳(メタデータ) (2024-11-07T13:45:56Z) - Dynamic Post-Hoc Neural Ensemblers [55.15643209328513]
本研究では,ニューラルネットワークをアンサンブル手法として活用することを検討する。
低多様性のアンサンブルを学習するリスクを動機として,ベースモデル予測をランダムにドロップすることでモデルの正規化を提案する。
このアプローチはアンサンブル内の多様性を低くし、オーバーフィッティングを減らし、一般化能力を向上させる。
論文 参考訳(メタデータ) (2024-10-06T15:25:39Z) - PerturBench: Benchmarking Machine Learning Models for Cellular Perturbation Analysis [14.526536510805755]
本稿では,この急速に発展する分野におけるベンチマークの標準化を目的として,単一細胞における摂動の影響を予測するための包括的なフレームワークを提案する。
当社のフレームワークであるPerturBenchには、ユーザフレンドリなプラットフォーム、多様なデータセット、フェアモデル比較のためのメトリクス、詳細なパフォーマンス分析が含まれています。
論文 参考訳(メタデータ) (2024-08-20T07:40:20Z) - Has Your Pretrained Model Improved? A Multi-head Posterior Based
Approach [25.927323251675386]
我々は、世界的知識の源として各エンティティに関連するメタ機能を活用し、モデルからエンティティ表現を採用する。
本稿では,これらの表現とメタ機能との整合性を,事前学習モデルの評価指標として用いることを提案する。
提案手法の有効性は,関係データセットを用いたモデル,大規模言語モデル,画像モデルなど,様々な領域で実証されている。
論文 参考訳(メタデータ) (2024-01-02T17:08:26Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
異なる因果発見は、データ生成プロセスを一連のモジュールに分解するために提案されている。
このようなモジュラニューラル因果モデルの一般化と適応性能について検討する。
我々の分析では、モジュラーニューラル因果モデルが、低データレギュレーションにおけるゼロおよび少数ショットの適応において、他のモデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-09T17:12:32Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
現代のデータ科学では、どの部分がより良い結果を得るために置き換えられるかというモデルの性質を理解することがより興味深い。
合成データ駆動型モデル学習において,多目的進化最適化を用いてアルゴリズムの所望特性を求める。
論文 参考訳(メタデータ) (2021-07-07T11:17:09Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Improved Protein-ligand Binding Affinity Prediction with Structure-Based
Deep Fusion Inference [3.761791311908692]
正確なタンパク質-リガンド結合親和性を予測することは、薬物発見において重要である。
深層畳み込みとグラフニューラルネットワークに基づくアプローチの最近の進歩により、モデルの性能は入力データ表現に依存する。
結合親和性予測を改善するため、2つのニューラルネットワークモデルの異なる特徴表現の恩恵を受けるための融合モデルを提案する。
論文 参考訳(メタデータ) (2020-05-17T22:26:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。